
faculty of science
and engineering

computing science

SC@RUG 2020 proceedings

Rein Smedinga, Michael Biehl (editors)

17th SC@RUG
2019-2020

17th S
C

@
R

U
G

 2019-2020

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd 3 01-05-18 13:11

SC@RUG 2020 proceedings

Rein Smedinga
Michael Biehl

editors

2020
Groningen

ISBN (e-pub): 978-94-034-2766-9
Publisher: Bibliotheek der R.U.

Title: 17th SC@RUG proceedings 2019-2020
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2020 proceedings

About SC@RUG 2020

Introduction
SC@RUG (or student colloquium in full) is a course

that master students in computing science follow in the first
year of their master study at the University of Groningen.

SC@RUG was organized as a conference for the sev-
enteenth time in the academic year 2019-2020. Students
wrote a paper, participated in the review process and gave
a presentation. Due to the corona virus there was no sym-
posium this year.

The organizers Rein Smedinga and Michael Biehl
would like to thank all colleagues who cooperated in this
SC@RUG by suggesting sets of papers to be used by the
students and by being expert reviewers during the review
process. They also would like to thank Henk Klabbers for
giving additional lectures workshops on presentation tech-
niques and speech skills.

Organizational matters
SC@RUG 2020 was organized as follows:

Students were expected to work in teams of two. The stu-
dent teams could choose between different sets of papers,
that were made available through the digital learning envi-
ronment of the university, Nestor. Each set of papers con-
sisted of about three papers about the same subject (within
Computing Science). Some sets of papers contained con-
flicting opinions. Students were instructed to write a sur-
vey paper about the given subject including the different
approaches discussed in the papers. They should compare
the theory in each of the papers in the set and draw their
own conclusions, potentially based on additional research
of their own.

After submission of the papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors through Nestor.

All papers could be rewritten and resubmitted, also tak-
ing into account the comments and suggestions from the
reviews. After resubmission each reviewer was asked to re-
review the same paper and to conclude whether the paper
had improved. Re-reviewers could accept or reject a paper.
All accepted papers1 can be found in these proceedings.

In his lecture about communication in science, Rein
Smedinga explained how researchers communicate their
findings during conferences by delivering a compelling sto-

ryline supported with cleverly designed graphics. Lectures
on how to write a paper and on scientific integrity and a
workshop on reviewing were given by Michael Biehl

Henk Klabbers gave a lecture about presentation tech-
niques and speech skills.

Students were asked to give a short presentation
halfway through the period. The aim of this so-called
two-minute madness was to advertise the full presentation
and at the same time offer the speakers the opportunity to
practice speaking in front of an audience. Henk Klabbers,
Rein Smedinga and teaching assistent Rick van Veen were
present during these presentations.

Unfortunately the workshops on presentation skills (to
be given by Henk Klabbers) and the actual conference itself
were cancelled due to corona virus measures. So this year
no organition of this conference by the students themselves,
no session chairing and no final presentations.

The overall coordination and administration was taken
care of by Rein Smedinga, who also served as the main
manager of Nestor.

Students were graded on the writing process, the review
process and on the 2 minute madness presentation.
Because there were no final presentations and students did
not need to organise the conference itself or act as a chair
during one of the sessions, we had to redefine the final grad-
ing as follows:
The draft paper accounted for 20%, the final paper for 40%,
the 2 minute madness presentation for 20% and the review
and re-review process both for 10%
For the grading of the presentations we used the assess-
ments from the audience and calculated the average of
these.

The gradings of the draft and final paper were weighted
marks of the review of the corresponding staff member
(50%) and the two students reviews (25% each).

In this edition of SC@RUG students were videotaped
during their 2 minute madness presentation using the video
recording facilities of the University. The recordings were
published on Nestor for self reflection.

Website
Since 2013, there is a website for the conference, see

www.studentcolloquium.nl.

Sponsoring
Since there was no final conference, there was no spon-

soring this year.

1this year, all papers were accepted

3

About SC@RUG 2020

Thanks
We could not have achieved the ambitious goals of this

course without the invaluable help of the following expert
reviewers:

• Alen Arslanagic
• Anja Reuter
• Arash Yadegari Ghahaderijani
• Estefania Talavera Martinez
• Fadi Mohson
• Fatih Turkman
• Frank Blaauw
• Héctor Cadavid Rengifo
• Jie Tan
• Jiri Kosinka
• George Azzopardi
• Michael Biehl
• Michel Medema
• Vasilios Andrikopulos
• Simon Gazagnes

and all other staff members who provided topics and pro-
vided sets of papers.
Also, the organizers would like to thank the Graduate
school of Science for making it possible to publish these
proceedings and sponsoring the awards for best presenta-
tions and best paper for this conference.

Rein Smedinga
Michael Biehl

4

SC@RUG 2020 proceedings

Since the tenth SC@RUG in 2013 we added a new
element: the awards for best presentation, best paper and

best 2 minute madness.

Best 2 minute madness presentation awards

2020
Andris Jakubovskis and Hindrik Stegenga

Comparing Reference Architectures for IoT
and

Filipe R. Capela and Antil P. Mathew
An Analysis on Code Smell Detection Tools and Technical

Debt
2019

Kareem Al-Saudi and Frank te Nijenhuis
Deep learning for fracture detection in the cervical spine

2018
Marc Babtist and Sebastian Wehkamp

Face Recognition from Low Resolution Images: A
Comparative Study

2017
Stephanie Arevalo Arboleda and Ankita Dewan
Unveiling storytelling and visualization of data

2016
Michel Medema and Thomas Hoeksema

Implementing Human-Centered Design in Resource
Management Systems

2015
Diederik Greveling and Michael LeKander

Comparing adaptive gradient descent learning rate
methods

2014
Arjen Zijlstra and Marc Holterman

Tracking communities in dynamic social networks
2013

Robert Witte and Christiaan Arnoldus
Heterogeneous CPU-GPU task scheduling

Best presentation awards

2020
none, because of corona virus measures no presentations

were given
2019

Sjors Mallon and Niels Meima
Dynamic Updates in Distributed Data Pipelines

2018
Tinco Boekestijn and Roel Visser

A comparison of vision-based biometric analysis methods
2017

Siebert Looije and Jos van de Wolfshaar
Stochastic Gradient Optimization: Adam and Eve

2016
Sebastiaan van Loon and Jelle van Wezel

A Comparison of Two Methods for Accumulating Distance
Metrics Used in Distance Based Classifiers

and
Michel Medema and Thomas Hoeksema

Providing Guidelines for Human-Centred Design in
Resource Management Systems

2015
Diederik Greveling and Michael LeKander

Comparing adaptive gradient descent learning rate
methods

and
Johannes Kruiger and Maarten Terpstra

Hooking up forces to produce aesthetically pleasing graph
layouts
2014

Diederik Lemkes and Laurence de Jong
Pyschopathology network analysis

2013
Jelle Nauta and Sander Feringa

Image inpainting

5

About SC@RUG 2020

Best paper awards

2020
Anil P. Mathew and Filipe A.R. Capela

An Analysis on Code Smell Detection Tools
and

Thijs Havinga and Rishabh Sawhney
An Analysis of Neural Network Pruning in Relation to the

Lottery Ticket Hypothesis
2019

Wesley Seubring and Derrick Timmerman
A different approach to the selection of an optimal

hyperparameter optimisation method
2018

Erik Bijl and Emilio Oldenziel
A comparison of ensemble methods: AdaBoost and

random forests

2017
Michiel Straat and Jorrit Oosterhof

Segmentation of blood vessels in retinal fundus images
2016

Ynte Tijsma and Jeroen Brandsma
A Comparison of Context-Aware Power Management

Systems
2015

Jasper de Boer and Mathieu Kalksma
Choosing between optical flow algorithms for UAV

position change measurement
2014

Lukas de Boer and Jan Veldthuis
A review of seamless image cloning techniques

2013
Harm de Vries and Herbert Kruitbosch

Verification of SAX assumption: time series values are
distributed normally

6

Contents

1 A survey of Encryption Algorithms in IoT
Kaavyaa Stalin Thara and Pranav Gupta Vallala 9

2 An Overview of Community Detection Techniques in Graph Analysis
Alpheaus Feltham and Vinayak Prasad 15

3 High-Level Architecture of Serverless Edge Computing Networks and its Requirements
Mark Soelman and Jaap van der Vis 20

4 Comparing Reference Architectures for IoT
H.F. Stegenga and A. Jakubovskis 26

5 User Profiling in Smartphones from Applications
Swastik Satyanarayan Nayak and Siddharth Baskaran 33

6 Data Science Pipeline Containerization
Andrea De Lucia and Evi Xhelo 39

7 Continuous Security Testing: A Case Study on the Challenges of Integrating Dynamic Security Testing
Tools in CI/CD
Remco v. Buijtenen and Thorsten Rangnau 45

8 A survey on surface interrogation methods
Luc Breeman and Robert Riesebos 51

9 An Analysis on Code Smell Detection Tools
Anil P. Mathew and Filipe A. R. Capela 57

10 Implementing Compositional Concurrency in Haskell
Deepshi Garg 63

11 A Review of Scene Recognition Techniques Based on Convolutional Neural Networks
Alina Matei and Andreea Glavan 69

12 Deep learning in oncology for predicting cancer radiotherapy treatment outcome – A survey
Jeroen G. S. Overschie and Hichem Bouakaz 76

13 An overview of methods used for automatic detection of social interaction in visual material.
Alessandro Pianese and Tanja de Vries 82

14 Comparison between the Dropout and DropConnect regularization schemes
Ludger Visser and Ariadna Albors Zumel 88

15 An Analysis of Neural Network Pruning in Relation to the Lottery Ticket Hypothesis
M.J. Havinga and R.S. Sawhney 94

16 An Overview of Workflow Scheduling Algorithms in Cloud
Nivin Pradeep Kumar and Siddharth Mitra 100

17 Consensus mechanisms to manage faults in Distributed Ledger Technologies
Sina Rouzbahani and Shivam Mutreja 106

Contents

18 An updated literature review of service choreography adaptation
Wouter Hertsenberg and Jurgen Nijland 112

19 Parallel Computation of Connected Component Trees in Giga and Tera-Scale Images
Kevin Gevers and Pieter Jan Eilers 117

8

A survey of Encryption Algorithms in IoT

Kaavyaa Stalin Thara, Pranav Gupta Vallala

Abstract—Protecting sensitive information is a significant problem in the Internet of Things (IoT) devices. There are many types of
symmetric and asymmetric encryption algorithms with a different set of requirements to protect the data in IoT devices. This paper
compares the symmetric algorithms such as Advanced Encryption Standard, Chacha20-Poly1305 and two asymmetric algorithms
such as Rivest–Shamir–Adleman and Elliptic curve cryptography encryption algorithms. As per the survey, we provided the impor-
tance encryption methods in IoT device and the findings give insight which encryption methods are most beneficial to use in IoT
devices for data protection.
The insights are obtained, analysing the requirements with efficiency and reviewing the scalability of encryption algorithms in IoT
devices under each encryption methods. Requirements are estimated by implementation cost, encrypting time and the risk factor
whereas the efficiency of each encryption algorithm is measured by the consumption of power when the size of a message is applied
to encrypt/decrypt. We also discussed the security measures of each method in the IoT device. The conclusion of this research shows
that all encryption methods have their own advantages and disadvantages. Based on the findings, Advanced Encryption Standard and
Chacha20-Poly1305 symmetric encryption algorithm are cost-efficient, faster and useful methods to protect the information in small
IoT devices. Whereas Rivest–Shamir–Adleman and Elliptic curve cryptography asymmetric encryption algorithms are most efficient
method to handle more informations in the IoT devices. So, the encryption algorithm can be used depending on the requirements of
the IoT device.

Index Terms—Symmetric methods, Advanced Encryption Standard, Chacha20-Poly1305, Asymmetric methods
Rivest–Shamir–Adleman, Elliptic curve cryptography.

1 INTRODUCTION

Networking of physical objects which contains electronics embedded
into them is called the Internet of Things (IoT). These objects
communicate and sense interactions among each other or with an
external environment. Advancements in Power, agriculture, medicine,
smart homes and cities, are just some of the few examples where
IoT is strongly established. Data exchange between these devices
over the internet are rapidly increasing. In turn, this generates more
security and privacy risks for the users of these devices, which is
currently one of the biggest challenges of the IoT [15]. Cryptography
techniques such as symmetric and asymmetric encryption algorithms
are developed to handle the data loss, security issues and protect the
device from hacker/attacker.

The main intention of this paper is to provide details about the
usage of encryption algorithms in IoT devices. Many different types
of encryption algorithms are available to protect the data, we only
focus on the two different symmetric encryption algorithm such
as Advanced Encryption Standard, Chacha20-Poly1305 and two
asymmetric encryption algorithm such as RSA and Elliptic Curve
Cryptography because these four encryption algorithms are widely
used in different type of IoT devices.

These different type of encryption methods are explained in-
depth and compared against each other with requirements, efficiency
and scalability in IoT device. Whereas, we measured the requirements
based on how much cost is required to implement and what is the risk
factor while implementing in the IoT devices. Then we evaluated the
efficiency based on how much power consumption is needed when it
is protecting the sensitive data in the IoT devices. Finally, scalabil-
ity is estimated by the security measures of each encryption algorithm.

The paper designed as follows: In section 2, we discussed the

• Kaavyaa Stalin Thara, E-mail: s.t.k.stalin.thara@student.rug.nl.
• Pranav Guptha Vallala E-mail: p.g.vallala@student.rug.nl.

Manuscript received 3 February 2020; accepted 10 February 2020; mailed
on 23 March 2020.
For information on obtaining reprints of this article, please send
e-mail to: s.t.k.stalin.thara@student.rug.nl p.g.vallala@student.rug.nl .

background information of symmetric and asymmetric encryption
algorithms to protect the data. We explain selected symmetric
encryption algorithms and briefly describe their advantages and
disadvantages in section 3. Then in section 4, we explain the
asymmetric encryption algorithms and briefly describe the imple-
mentation process with their strength and weaknesses. Based on the
requirements, efficiency and scalability of IoT devices we discussed
the comparison between each encryption algorithm and their benefits
in the IoT devices in section 5. Then, we summarize our findings in
section 6. Finally, in section 7, we added our ideas to implement in
future.

2 BACKGROUND
The main aim of cryptography is to apply an encryption algorithm in
the Internet of Things to secure the data communication between the
devices. There are three different types of cryptography algorithms:
symmetric, asymmetric and hash function.

The symmetric algorithm is known as a same secret key at both
ends, for instance, the original message (plain text) is encrypted by
using a key and the encrypted message called as a cipher text. Then
the cipher text is decrypted by using the same secret key to show
the original information. The process shown in Figure 1. The main
drawback of the symmetric key encryption is that all the parties that
are involved should exchange the same key that is used to encrypt the
data. AES(Advanced Encryption Standard), DES(Data Encryption
Standard), Blowfish and RC4 (Rivest Cipher) are the subtypes of
symmetric encryption. In section 4 we discussed the sub-types of
symmetric encryption algorithm in detail.

An asymmetric encryption algorithm is different from symmetric
encryption because of the pair-key rule used in asymmetric encryption
process. It represents that both the public and private key used
to encrypt and decrypt pieces of information in the asymmetric
algorithm. The Figure 2 shows the process of encryption of data
by using asymmetric algorithm. Elliptic curve cryptography(ECC),
Diffie-Hellman and Rivest–Shamir–Adleman(RSA) are types of
asymmetric encryption algorithm that are used widely to create a
digital signature to secure the information. Moreover, this algorithm
will verify the message flow between the sender and receiver node by
using the public key to secure the information. On the other hand, the
user needs to keep the private key safely. If the user loses the private

9

Fig. 1. Symmetric Encryption Process 1.

Fig. 2. Asymmetric Encryption Process1.

key then the regeneration of the same private key is not possible,
which leads to major problems. Firstly, the user will not be able
to read the new information and will be unable to delete previous
communications. Secondly, if the hacker identifies the private
key then the hacker can read all communications. The additional
shortcoming of the asymmetric encryption algorithm process is that it
is slow while handling large datasets of encryption.

In addition to it, cryptography techniques are an essential, effec-
tive and efficient component to ensure the secure communication be-
tween the different entities by transferring unintelligible information
and only the authorized recipient can be able to access the informa-
tion [11]. Both symmetric and asymmetric encryption are key-based
encryption algorithms to secure the information. We briefly discuss
them in forthcoming section 3 and section 4.

3 SYMMETRIC METHODS
Cryptography means protecting private information against unautho-
rized access in situations where it is difficult to provide physical secu-
rity [9] [18]. Symmetric encryption techniques are a type of cryptog-
raphy techniques which provides an efficient method of securing com-
munication between the IoT devices. Various sub types of symmetric
encryption methods are there to encrypt and decrypt the information,
but we have taken only two types of symmetric encryption algorithms
which are Advanced Encryption Standard and Chacha20-Poly1305.
These methods are designed for different types of requirements to en-
crypt and it varies from each other as discussed in section 3.1 and 3.2.

3.1 Advanced Encryption Standard
Advanced Encryption Standard is a encryption technology to provide
a shield to any dataset that contains sensitive information in the
IoT devices. This encryption method known as substitution and
permutation network is a number of mathematical operations are
carried out in block cipher algorithms [1]. Using the mathematical
operations, original message are encrypted into set of numbers and
alphabets. This process is known as encryption and the encrypted
message known as cipher text.

In [10] the authors explain the implementation process of cost
effective Advanced Encryption Standard algorithm. Development
steps shown in Figure 3 and described as follows:

Fig. 3. AES Workflow[10]

1. The input message is known as plain text which will be stored in
the AES 128-bit block and as per the size of input message the
block size can able to change as 128,192 or 256-bits, this process
are called as round key. A number of rounds are repeated in the
AES, Nr, is represented by the length of the key, which can be
10, 12 or 14 for key lengths of 128, 192 or 256-bits. [10].

2. The condition (r < Nr), r represents the list of letters need to
encrypt and Nr represents the number of key allocated for en-
crypting the entire message. This condition starts to work once
the block size of the encryption process is fixed.

3. SubBytes are used to split each letter separately from the in-
put message to convert into bytes and evaluate according to the
lookup table as shown in Figure 4.

Fig. 4. Lookup Table(S box Table)[1]

4. ShiftRows each of these rows is shifted to the left by a set
amount: their row number starting with zero and then top row
is not shifted at all, the next row is shifted by one[2],as shown in
Figure 5.

One major advantage of the Advanced Encryption Standard is that it
produces a high level security to the data in the IoT designs while

A survey of Encryption Algorithms in IoT – Kaavyaa Stalin Thara and Pranav Gupta Vallala

10

Fig. 5. ShiftRows[1]

analysing to other symmetric algorithms. Moreover, the speed of
the encryption and decryption method are comparatively high for the
small key-size. On the other hand, first stage of encryption process is
to convert the message to subBytes. The subBytes of each block can
be read by converting it into binary digits. So, if hacker/attacker en-
ters the first stage of encryption process then they can able to read the
subBytes.

3.2 ChaCha20-Poly1305
Chacha20 is an encryption technique and Poly1305 is a cryptographic
message authentication code.On a general purpouse 32-bit(or greater)
CPU without dedicated instructions, Chacha20 is generally faster than
AES. The reason for this is because of the mathematical operations
such as addition, multiplication, rotation and XOR that are used to en-
crypt and decrypt the messages compared to binary digits in Advanced
Encryption Standard(AES) that are used for encryption to secure the
messages. In addition to that, the developer will not be needed to set
up the lookup table for Chacha20-Poly1305 and it’s easy to imple-
ment in IoT devices, whereas in Advanced Encryption Standard, the
developer needs to set up the lookup table as shown in Figure 4 to
provide more efficiency while encrypting the messages and the imple-
mentation process of Advanced Encryption Standard in IoT devices
are challenging. For instance, Chacha20/Poly1305 has already been
adopted and deployed by major companies such as Google (Chrome
browser, Android mobile devices) and Apple (Apple HomeKit for IoT
devices) [4]. The workflow of Chacha20-Poly1305 is described as fol-
low and Figure is shown in 6.

1. Depending upon the input message, it will generate the size of
the key. The generated key remains the same for both encryp-
tion/decryption and perform an XOR function by using the gen-
erated key also known as streamed key.

2. Poly1350 are used to validate the encrypted message.

Fig. 6. Workflow of Chacha20-Poly1350[6]

4 ASYMMETRIC METHODS
There are many asymmetric encryption methods are used to au-
thenticate, validate and secure the datas in IoT devices by gen-
erating the keys,For example asymmetric encryption algorithms
are used in fingerprint detection, home security IoT and so
on. We provided brief overview of two asymmetric methods

such as Rivest–Shamir–Adleman(RSA) and Elliptic curve cryptogra-
phy(ECC). This method is totally different from symmetric encryption
as discussed in section 4.1 and 4.2

4.1 Rivest–Shamir–Adleman
Rivest–Shamir–Adleman(RSA) encryption algorithm is the basis for
modern asymmetric encryption, which uses a pair of keys (public
and private key) to encrypt information and prove the sender’s iden-
tity [17]. RSA protects the sensitive data by applying complex math-
ematical operation such as factorization method. The message work-
flow of RSA encryption and decryption is shown in Figure 7.In RSA
workflow, the sender encrypts the message using the public key and it
will generate the digital signature to protect the message in the IoT de-
vice. Whereas, the receiver will be able to read the message by using
both private and public key.

Fig. 7. Illustrates the encryption and decryption process of RSA algo-
rithm in the Digital signature uses the public key to encrypt and the pri-
vate key to decrypt in the encryption and decryption process [12]. The
sender using HASH algorithm to calculate the hash value of the file M,
then generate the digital signature C from using the key to encrypt dig-
ital abstract and then M C together and sent to the receiver meantime
receiver receives the file M1 and digital signature C1, needs to verify
that M and M1 are identical [12]

In [20] the authors implemented the RSA algorithm which requires
the short key length to secure the information from wireless IoT de-
vice as shown in Figure 8.Their study states that:

1. Firstly, two 16 bit prime numbers p and q are used to generate 32
bit public and private keys [20].

2. When both a public and private key are generated, the public key
(e, n) is distributed to the device requiring encryption and the
plain text is encrypted and encrypted cipher text is sent where
data are required and decrypted via private key (d) [20].

Fig. 8. RSA encryption by generating the random number with small key
bits mechanism [20]

SC@RUG 2020 proceedings

11

The keys will not store any information in the memory, so once
the decryption process is completed the keys will be automatically
deleted. Then the keys with a different set of a random number
will be generated for new encryption. The major drawback is the
implementation cost is higher for regenerating the smaller keys for
encrypting the messages.

An advantage of RSA encryption is that it generates some ran-
dom numbers to set as a private key. In addition to that, the random
number key is a fixed private key for a single user. For every encryp-
tion of the message, the receiver receives a new private randomly
generated key to access the message from the sender so that hackers
or attackers are will not be able to find the private key to read the
secret message.

Moreover, the drawback of RSA algorithm is that, it requires a
key of 2048 bits or more to guarantee security and the encryption
algorithm using such a large key size is not suitable for use in wireless
communication devices,cell phones, IoT devices, or places that
require fast data processing [20].

4.2 Elliptic curve cryptography
Elliptic Curve Cryptography is a more advanced method used for
encrypting the information. This method encrypts large document
which contains more than 400 words in a document within a few
seconds.The key distribution algorithm is used to share a secret-key to
the user, the encryption algorithm enables confidential communication
and the digital signature algorithm is used to authenticate the signer
and validate the integrity of the message [14] [5].

4.2.1 Speed-up the encrypt and decrypt process
Laiphrakpam Dolendro Singh and Khumanthem Manglem Singh
(2015) implemented the high-speed text cryptography using Elliptic
curve cryptography encryption algorithm. The algorithm is designed
in such a way that it can be used to encrypt or decrypt any type of
script with defined ASCII values [16]. Their study states that:

1. Over 409 words encrypted in 0.093seconds and decrypt the same
message length in 0.14seconds with 21.017kB size.

2. Their method avoids the costly operation of mapping and the
need to share the common lookup table between the sender and
the receiver [16].

Their results show the speed of encrypting the message with lesser
cost and low computational power. Also, they proved 192-bit key
length can able to protect against naive attack.

The ECC algorithm outperforms RSA in a constrained environ-
ment in terms of memory requirements, energy consumption, key
sizes, signature generation time, key generation and execution time,
and decryption time while RSA performs better in verifying the
signature and encrypting [13].

5 DISCUSSION
Both symmetric and asymmetric encryption methods have their
strength and weakness.Also, all encryption methods varies each other
such as, how much execution time is taken for encrypting and decrypt-
ing the message in IoT device? how many key sizes need for encryption
process? what are all the risk while encrypting?. In this section, we
will compare them on requirements, efficiency and scalability on IoT
devices. We also discussed real-time example are implemented in dif-
ferent types of IoT devices using an encryption algorithm as shown in
Table 1.

5.1 Requirements
Requirements for each encryption algorithms play a vital role during
the implementation process in IoT devices. Requirements such as
cost, risk factor and execution time are taken into account.

Furthermore,to compare efficiency between symmetric and asym-
metric encryption methods, the length of words used for encryption
and decryption of each method and the power consumption(speed) as
explained further.

The most beneficial method, the Advanced Encryption Standard
algorithm reduces the cost of building the security to protect the
message between the edge devices. Moreover,For this algorithm it
is hard to implement the protection structure but it provides better
security to message after implementation of the AES algorithm in IoT
device, no major risk detected in the AES algorithm. Execution time
called as a number of rounds where the rounds depending upon the
key length. For instances, 192 bits input key length need 10 rounds to
encrypt the message.

The power consumption is dependent on the processing speed
because of the execution time, so the number of computations that
determines the processing speed becomes the index of the light-
ness [19].AES encryption speed up the process for small information
length.

Chacha20-poly1350 is more efficient in encrypting large infor-
mation in IoT devices, browers(Morella Firefox) and wearable
devices. The execution time is input-independent since ChaCha20-
Poly1305 does not contain variant time operation such as SS-box [8].
Chacha20-Poly1350 was three times faster than the Advance En-
cryption Standard(AES) on mobile devices. In addition to that,
this algorithm has masking functionality to protect the signals from
attackers/hackers.

In contrast to the popularity of the Advanced Encryption Stan-
dard(AES) encryption method, Chacha20-Poly1305 plays a
prominent role to protect the sensitive data. In additon, Chacha20-
Poly1305 encypts the message faster so the power consumption are
low comparatively. we observed this difference by analyzing the
several research papers. This algorithm works very fast to encrypt and
decrypt the large sensitive message as already discussed in section 4.

Rivest, Shamir and Adleman(RSA) requires more enhanced memory
requirement, memory usage to encrypt the messages. Meantime, RSA
applies a large key size to generate a random number for safeguard
the data. So, implementation cost is higher for every addition of key
size. RSA is very vulnerable to attacks, if the generated key is weak,
therefore care must be taken to ensure that two large random numbers
are used to calculate the modulus. [3], [13].The execution time of the
RSA asymmetric algorithm for encryption takes low time for small
message length and more time for large message length compares to
the Elliptic curve cryptography asymmetric algorithm.

Elliptic curve cryptography algorithm is a high standard asym-
metric algorithm, which can be able to execute the algorithm
effectively in IoT devices. Elliptic curve cryptography requires
smaller pairs of a key to encrypt and decrypt the long message faster
while comparing to RSA key size. In addition to that, the ECC
algorithm needs less amount of time to execute the encryption and
decryption process for both a short and large set of information.
By applying the complex techniques such as scalar multiplication
technique to the ECC algorithm, the security, power and timing
attacks can be preventable.

5.2 Scalability

The scalability in the IoT devices play a significant role because there
are a diverse number of wireless IoT devices which use different
type of encryption methods depending upon the requirements and the
efficiency needed for particular IoT system.

AES is a widely used encryption algorithm in IoT devices, due
to its security measure and low cost for implementation. Moreover,

A survey of Encryption Algorithms in IoT – Kaavyaa Stalin Thara and Pranav Gupta Vallala

12

it requires fewer resources and is also much faster than asymmetric
ciphers [7].

Chacha20-Poly1305 is an alternative symmetric encryption al-
gorithm of Advanced Encryption Standard (AES). This algorithm
developed with both security and authentication to protect the
sensitive information in IoT devices. Also, it is even more faster
than Advanced Encryption Standard. Comparatively, in symmetric
encryption algorithms, Chacha20-Poly1305 plays a prominent role in
IoT devices

In asymmetric encryption algorithm Elliptic curve cryptography
is an alternative of Rivest–Shamir–Adleman (RSA) method. Elliptic
curve cryptography is the fastest asymmetric encryption which is used
to encrypt large set of information in the IoT devices. Moreover, it
can protect multiple communications between the devices. Also, the
implementation costs are low compare to Rivest–Shamir–Adleman
method. IoT device needs small key size with low implementation
cost to secure the informations, whereas RSA has large key size and
implementation costs are high so it cannot be used in IoT device.
The researchers implemented the low key-size generated by RSA and
tested in IoT device which gives more advantages but equally it has
drawbacks for protecting the data for long period of time.

5.3 Real-Time Examples
The Table 1 shows the encryption algorithms used in the IoT devices
and in Table 2 shows the different type encryption algorithms with
key size. Encryption algorithm can be implemented depending upon
the requirement of key size in the IoT device

Table 1. Real-Time Examples

Encryption Methods IoT device
AES Refrigerators and smart phones

Chacha20 Google Chrome, Apple’s HomeKit,Mozilla Firefox
RSA web Browsers
ECC Smart Homes (IoT)

Table 2. Overall encryption Methods

Encryption Methods key size
AES 128, 192 or 256 bits

AEDS-GCM 128, 192 or 256 bits
Chacha20 256bits

Chacha20-Poly1305 32 bytes
XChacha20-Poly1305 32 bytes

RSA 1024 or 2048 bits
ECC 256bits

6 CONCLUSION
Various encryption methods exist in the IoT devices with their
strengths and weakness. This paper is limited to the comparison
of two types in the symmetric method and asymmetric method. In
addition, we discussed the requirements, efficiency and scalabilityin
IoT device of each method.

Chacha20-Poly1305 is the best method in the symmetric en-
cryption algorithm when we look at the requirements in section 5.1
and Table 2. This algorithm has the best encryption standards with
masking functionalities to protect the information in IoT devices.
Moreover, this method is widely used in many IoT wearable devices.

In asymmetric methods, Elliptic curve cryptography encryption
is the best method because it needs fewer parameters to build the
encryption algorithm in the IoT devices. Also, this algorithm encrypts
the information faster with fewer memory requirements and key
size. Chacha20-Poly1305 use the same key for both encryption and
decryption whereas Elliptic curve cryptography method uses the
different key(public key and private key) for encrypting and decrypt-
ing the message. In addition, Chacha20-Poly1305 has small key
size which is the added advantage to the implementation in the IoT
devices. The key size of each encryption algorithm as shown in Table 2

In conclusion, we argue that the encryption algorithm should be
applied depending upon the requirements of IoT devices. The encryp-
tion algorithms we discussed have their advantages and disadvantages.
So, the algorithms should be used accordingly. Advanced Encryption
Standard process should be used to a smaller dataset flow in the IoT
device whereas Chacha20-Poly1305 can be used for complex IoT
devices.

Both symmetric and asymmetric encryption algorithms can be
used in IoT devices to protect the data. Symmetric encryption types
are recommended to use in small IoT devices or less communication
between the IoT devices such as Apple home kit, smartphone and
surveillance systems. These devices need to implement with fewer
requirements to obtain better efficiency to protect the data with an
inexpensive cost for personal usage. On the other hand, the execution
time needs to be less for encrypt/decrypt, the more information in
IoT device or more sensible interaction between the devices. So, for
this scenario, asymmetric encryption algorithms are recommended.
These findings should provide a clear overview of which encryption
algorithm should use in a different type of devices.

We provide a concise and comparison of different well-known
encryption methods used in IoT devices. We compared the encryption
algorithms based on requirements to build better protection to the
data, efficiency to speed up the encrypt/decrypt process and scalability
of encryption algorithm in IoT devices. Moreover, we provided
real-time examples of each encryptions algorithm and an overview of
all existing encryption. In the section of future work, we will suggest
a general idea to extend our research work which also increases the
quality of comparison between symmetric and asymmetric encryption
algorithms in IoT devices.

7 FUTURE WORK

For future work, we would suggest extending our research by
analysing, validating the parameters used for estimating the encryp-
tion/decryption speed and evaluating the count of words in Advanced
Encryption Standard, Chacha20-Poly1305 types of symmetric encryp-
tion methods and Rivest–Shamir–Adleman, Elliptic curve cryptogra-
phy types of asymmetric encryption methods. In addition, each en-
cryption method have their own key generation process. So analyzing
each key generation technique,would be a valuable addition to our pa-
per. Moreover, there are serval sub-types for every individual branch
of symmetric and asymmetric encryption methods. Addressing these
sub-types will uplift the standards of this paper.

ACKNOWLEDGEMENTS

The authors wish to thank Héctor Cadavid, Wouter Hertsenberg,
Rishabh Sawhney for reviewing the paper.

REFERENCES

[1] A. M. Abdullah. Advanced encryption standard (aes) algorithm to en-
crypt and decrypt data. ResearchGate, July 2017.

[2] Compose Labs Inc. The Advanced Encryption Standard (AES) Algorithm,
2016.

[3] Doctrina.org. How RSA Works With Examples, 2012.
[4] EENEWS EUROPE AUTOMOTIVE. Chacha20/Poly1305 authenticated

encryption IP targets IoT, June 2017.

SC@RUG 2020 proceedings

13

[5] M. Hellman and J. Reyneri. Fast computation of discrete logarithms in
gf(q). 1983.

[6] Java Interview Point. Java ChaCha20 Poly1305 Encryption and Decryp-
tion Example, April 2019.

[7] JSCAPE LLC. What AES Encryption Is And How It’s Used To Secure
File Transfers, May 2015.

[8] KDDI Research, Inc. Security Analysis of ChaCha20-Poly1305 AEAD,
2017.

[9] R. Kumar and A. Ani. Implementation of elliptical curve cryptogra-
phy. IJCSI International Journal of Computer Science Issues, 8(2):1694–
0814, July 2011.

[10] L. Li, J. Fang, J. Jiang, L. Gan, W. Zheng, and H. F. a nd Guanwen Yang.
Sw-aes: Accelerating aes algorithm on the sunway taihulight. IEEE In-
ternational Symposium on Parallel and Distributed Processing with Ap-
plications and 2017 IEEE International Conference on Ubiquitous Com-
puting and Communications, pages 1204–1211, Dec. 2017.

[11] M. F. Mushtaq, S. Jamel, A. H. Disina, Z. A. Pindar, and M. M. D. Nur
Shafinaz Ahmad Shakir. A survey on the cryptographic encryption al-
gorithms. IJACSA International Journal of Advanced Computer Science
and Applications, 8(11):333–343, 2017.

[12] NaQi, W. Wei, J. Zhang, J. Z. Wei Wang, J. Li, P. Shen, X. Yin, X. Xiao,
and J. Hu. Analysis and research of the rsa, algorithm. Information
Technology Journal, 12:1818–824, July 2013.

[13] S. Nisha and M. Fari. Rsa public key cryptography algorithm –a re-
view. INTERNATIONAL JOURNAL OF SCIENTIFIC TECHNOLOGY
RESEARCH, 6:187–191, July 2017.

[14] K. Rabah. Theory and implementation of elliptic curve cryptography.
Journal of Applied Sciences, 5(4):604–633, June 2005.

[15] D. A. F. Saraiva, V. R. Q. Leithardt, D. de Paula, A. S. Mendes, G. V.
González, and P. Crocker. Comparison of symmetric key algorithms for
iot devices. MDPI, oct 2019.

[16] L. D. Singh and K. M. Singh. Implementation of text encryption using
elliptic curve cryptography. Eleventh International Multi-Conference on
Information Processing-2015 (IMCIP-2015), pages 73–82, 2015.

[17] Sophos Ltd. Researchers discover weakness in IoT digital certificates,
2019.

[18] W. Stalling. Cryptography and network security. June 2010.
[19] O. Toshihikos. Lightweight cryptography applicable to various iot de-

vices. NEC Technical Journal, 2(1), 2017.
[20] H. Yu and Y. Kim. New rsa encryption mechanism using one-time en-

cryption keys and unpredictable bio-signal for wireless communication
devices. Licensee MDPI, 9, Feb. 2020.

A survey of Encryption Algorithms in IoT – Kaavyaa Stalin Thara and Pranav Gupta Vallala

14

An Overview of Community Detection Techniques in Graph
Analysis

Alpheaus Feltham S4216768, Vinayak Prasad S4208110

Abstract—A set of network community detection algorithms that have been proposed in other papers and compare them for efficiency,
effectiveness and ease of implementation. As part of our review, we discuss the function of each algorithm, its ease of implementation,
and the relative effectiveness of each algorithm in various scenarios. Of the four algorithms discussed, the first two are an optimization
algorithm and an agglomerative algorithm both using a measure of modularity to determine the interconnectedness of the network
nodes. The second two are both divisive algorithms, the first using a measure of ’betweenness’ to determine community structures,
and the second using an edge clustering coefficient.

Index Terms—Graph Analysis, Group Detection, Community Detection, Graph Theory.

1 INTRODUCTION

Networks are an increasingly common element in modern life and so-
ciety. There exist various natural systems which may be seen as net-
works, examples of which include: cellular structures and interactions,
ecological networks such as food webs and biological networks that
describe protein folding. There are numerous networks present within
human social circles, describing structures such as collaboration, cita-
tion or relationship networks. Over the last 40-50 years, the rapidly
increasing prevalence of the internet and telecommunications has led
to a rise in the value of personal and group information. As such, de-
tecting and analyzing community structures in networks is often a very
useful source of data for modern research, as well as modern corpora-
tions and organizations.

Graph theory is the predominant means by which networks are an-
alyzed, as it allows various algorithms to easily manipulate the net-
works, assign values where required, and use such values to make
measurements or categorize various portions of the graph. Figure 1
shows a basic network containing 3 separate communities, each of
which is densely connected, while the different communities them-
selves are sparsely connected to each other. An algorithm may inter-
act with each of these individual nodes and the edges between them,
assign data to the individual elements and analyze the structure of the
graph based on adjacent vertices.

In this paper, we review and compare a number of different methods
for identifying community detection in networks, primarily through
graph theory based algorithms. We analyze the ease of implemen-
tation, the complexity, the effectiveness, and the efficiency of each
method for different kinds and sizes of graphs. The first two algo-
rithms use a variation of network modularity to isolate and identify
communities. The second two rate a network on its ”betweenness” a
measure of the number of connections within groups compared to the
number of connections between them.

This paper focuses on exploring and comparing a few of the algo-
rithms implemented. Existing papers, such as [1][3][4][6] are not effi-
cient as new methods are implemented and updated everyday. There-
fore, we have chosen to analyze, compare and discuss 4 graph the-
ory: Modularity-Based Optimization, Modularity-Based Agglomera-

• Alpheaus Feltham is a student at Rijksuniversiteit Groningen, E-mail:
a.feltham@student.rug.nl.

• Vinayak Prasad is a student at Rijksuniversiteit Groningen, E-mail:
v.prasad@student.rug.nl.

Fig. 1. A network consisting of 3 different, tightly knit communities,
loosely connected with each other.

tion, Betweenness-Based Division and Edge Clustering-Based Divi-
sion.

2 BACKGROUND INFORMATION

In this paper, multiple implementations of community detection meth-
ods are compared. We are going to first provide an outline of what
the challenges are faced when community detection had been imple-
mented. Secondly, we are going to provide an introduction to Graph
theory.

2.1 Challenges Encountered

Due to the many industries using different methods to detect communi-
ties, many implementations are used for producing valuable insights,
each with various purposes and requirements. Many methods have
different complexity and data, and interoperability is often a problem.
Another challenge is to better define the conditions of applicability of
different methods, and theoretical grounds to define when a network
needs transformation to become suitable to be analyzed by a given
method.

The evaluation of the quality of dynamic communities, both inter-
nally and externally, represents a challenge for future works in dy-
namic community detection. Methods directly adapted from the static
case do not consider the specificity of dynamic communities, specifi-
cally, the difficulties of smoothness and community events. This ques-

15

tion is of utmost importance, since, despite the methods already pro-
posed, their performances on real networks besides those they have
designed to figure on remains mostly unknown [2].

As we have seen, various methods exist to generate dynamic graphs
with slowly evolving communities. They need different properties,
like community events, stable edges, or overlapping communities. Ac-
tive challenges are still open during this domain, among them The
generation of link streams with community structures, and An assess-
ment on the realism of communities generated with such benchmarks,
compared with how empirical dynamic communities behave.

2.2 Graph Theory

A graph is an illustrated representation of a collection of objects,
where some pairs of objects are connected by links. The intercon-
nected objects provide points termed as vertices, and the links that
connect the vertices are called edges.

There are two primary methods for detecting communities in
graphs. The Agglomerative method we take an empty graph that con-
sists of nodes with no edges. Then add “stronger” to “weaker”edges
one-by-one to the graph. This strength and weight of each edge can
be calculated in different ways. In the Divisive method, this occurs in
reverse order. In the complete graph take off the edges iteratively. The
edge with the greatest weight is removed. Then repeat at every step it
recalculates the edge-weight calculation . The weight of the remaining
edges change after an edge is removed. After a number of steps, we
get clusters of densely connected nodes.

This is used in the Clustering algorithms, which detects communi-
ties easily. The graphs provide a t way of coping with abstract concepts
like relationships and interactions.

3 DETECTING METHODS

In this section we present existing solutions for detecting communities
using graph theory. The function and implementation of each algo-
rithm is described, and its accuracy and complexity are discussed. Of
the algorithms we will be investigating, the first is an optimization
algorithm, it finds a value or function by which it can measure the
community structure and attempts to maximize it. The second is an
agglomerative algorithm, meaning it functions by recursively merg-
ing similar nodes or groupings to discover community structures. The
final two will be divisive in nature, as they partition and divide the
graph into smaller and smaller pieces by removing inter-community
links [1].

3.1 Modularity-Based Optimization

The algorithm proposed by Blondel and Guillaume, finds high mod-
ularity in large networks in quick succession. As an optimization al-
gorithm, it attempts to use a function to describe a community struc-
ture, and then attempts to maximize this function for each grouping of
nodes. In this case, that measure is defined by modularity , which helps
in identifying the structure of a given graph. Modularity is a scalar
value between -1 and 1 that is a measure of the number of links con-
necting nodes within a community compared to the number of nodes
connecting it to other communities. The function of the algorithm
consists of two steps, taken iteratively and repeated multiple times,
using the output of the previous run as the input for the next. This
algorithm generally functions with a weighted network, where edges
between nodes are given a weight value determined by some aspect of
the network, for example in a phone network, it might be the number
of communications made between two users [1].

In the first phase, the algorithm assigns each node in the network
to a different community, meaning that in the first phase, there are
as many communities as there are nodes. The modularity for each
node is calculated, and then the node is compared to each of its direct
neighbors. If there is a gain in modularity caused by removing the
initial node from its community and by placing it in the community of
its neighbours, the initial node is then placed into the community for
which this gain is maximum. This is only done if this gain is positive.
If there are no positive gains, then the initial node stays in its original
community. This process is repeated sequentially for all nodes until
no further improvement can be achieved.

In the second phase, a new network is built whose nodes are now the
communities found from the previous step. The weights of the links
between the new nodes are given new values. These are determined by
the sum of the weight of the links between nodes in the correspond-
ing two communities. Once this phase is completed, it is then possi-
ble to reapply the first phase of the algorithm to the derived weighted
network and to iterate. Since meta-communities decreases with each
pass, most of the computing time is used in the first pass and subse-
quent passes take less time to process. This process repeats until there
are no more changes and a maximum of modularity is achieved [1]. A
simple example of this process can be seen in figure 2.

The modular process followed by this algorithm is straightforward.
As it has to iterate through each node at least once, and then repeats
this process for a smaller and smaller network as more and more of the
nodes are aggregated into larger communities, the computational com-
plexity is approximately on the order of O(nlog(n)). This means that
even on larger networks, this algorithm can function quite efficiently.

Fig. 2. A simple overview of the Modularity Optimization Algorithm,
modified from [1].

3.2 Modularity-Based Agglomeration

The algorithm proposed by Clauset et al. [3] is similar to the algorithm
proposed by Blondel et al. [1], which attempts to organize the network
into communities using a measure of modularity. While the algorithm
proposed by Blondel et al. ends up in simply merging various clus-

An Overview of Community Detection Techniques in Graph Analysis – Alpheaus Feltham and Vinayak Prasad

16

ters and to test if there are any changes in modularity, Clauset et al.
propose a method which simply each node and tests to work out if its
modularity would increase if it is assigned to a specific community.

Essentially, this algorithm attempts to find combinations of adjacent
nodes or groups that would increase the modularity measure of the
community as a whole. It then repeatedly combines the two nodes
or communities whose amalgamation produces the largest increase in
modularity. Unlike the algorithm proposed by Blondel et al. however,
this algorithm does not require a weighted network to function. This
step by step process also allows the algorithm to make a hierarchical
dendrogram of the community structure of the network.

The exact implementation proposed in this paper involves storing
the modularity of each pair of communities with at least one link be-
tween them within a sparse matrix, and storing each row as a binary
tree. A max-heap is used to store the largest element of each row
of this matrix along with the labels of the corresponding community
pair. The algorithm process involves populating the sparse matrix with
the initial modularity value of each linked node pair, and finding the
largest value to add to the max-heap. The largest value in the max heap
is then taken and the two nodes or communities listed are joined into
a community. This process is then repeated until only one community
remains.

This algorithm is rather simple, its computational complexity is
among the one of the top that we’ve reviewed, being approximately
on the order O(mdlog n), with n being the number of nodes in the net-
work, m the number of edges, and d the depth of the resultant dendo-
gram. The complexity of implementation in this case has been reduced
through an inspired solution of simply trying to find differences within
the modularity of the network, instead of consistently keeping track of
every node and adjacency.

3.3 Betweenness-Based Division

The detection algorithm proposed by Newman and Girvan describes a
detection method based on a ‘betweenness’ value. It uses this measure
to determine the interconnectedness of various clusters of nodes in
order to discover more densely connected groups. This method has
two steps: the first step is to calculate the ‘betweenness’ of each edge
connecting a node and its neighbors, the second is to use this value
to slowly disassemble the whole network piece by piece, removing
the edges that have the least ‘betweenness’ in order to determine the
community hierarchy of the graph.

The paper proposes a few different options in order to accomplish
the first step, determining the ‘betweenness’. The first is an implemen-
tation of a basic shortest path algorithm that has been adapted to allow
for path weighting in cases where there are more than one shortest
path between different nodes. Essentially, this functions by selecting a
‘source’ node to serve as an origin point, and then assigning a weight
to each node or vertex in the graph depending on how many short-
est paths there are from the source to said vertex. The algorithm then
begins calculating the betweenness values for each edge in the graph
beginning with the outer extremities of the network, and working its
way to the source node, assigning a ‘betweenness’ value to each edge
based on a ratio of the weight of the two vertices it is connecting, and
the values of the edges connecting to the vertex that is further away
from the source node. An example of this can be seein in figure 3.
This whole operation, calculating for a number of source nodes n and
edges m functions in time O(mn). Since this then has to be repeated
for every edge in the network as it is removed and the betweenness
recalculated, the final operational order is generally O(m2n), though it
can become O(n3) when implemented on sparse graphs [4].

The second and third methods proposed to determine the ‘between-
ness’ values of each node in the paper are fairly similar to one another.

Fig. 3. An example of the results of the shortest path method, taken
from [4].

Fig. 4. A view of a hierarchical network dendrogram representation
of various communities detected by the betweenness algorithm, taken
from [4].

Of the two methods described, the first emulates a resistor network
in order to determine a ‘betweenness’ value for each edge, while the
other emulates the time taken for an individual to walk between two
points using random routes. As mentioned by the authors of the pa-
per, the core principles of both of these methods are based in the same
mathematics [4], and they are effectively equivalent regardless of spe-
cific implementation. Essentially, these alternate methods attempt to
measure the ‘betweenness’ by simulating a flow rate, either of elec-
trons or of people, between various points within the network. Both
implementations use a matrix of values that are inverted to find the
flow-rate equivalent between each selection of ‘sources’ and ‘sinks’, a
process that can be quite intensive, and according to the authors func-
tions approximately on the order of O(n3) to O(n4) depending on the
graph in question [4].

Finally, once the betweenness measure is found for each edge in
the network, the algorithm then sorts through the edges in the network
and removes edges with the lowest ‘betweenness’ scores, gradually
increasing the cutoff range as the network begins fragmenting into the
most interconnected groups. This allows the network to create a hier-
archical dendrogram of the network showing the community structure
at different levels of ‘betweenness’ an example of which can be seen
in figure 4 below.

Using the shortest-path ‘betweenness’ algorithm as suggested by
Newman et al. [4] provides us with an algorithm of, at worst order
O(n3), which for small to moderately sized graphs and networks is
functional enough, but at the time of publication (2004) this limited the
size of the network that could be processed to about 10000 nodes[4].
While the exact number has likely increased with subsequent improve-
ments in computer hardware, a complexity of O(n3) can still signifi-
cantly impact the efficiency of any system using this algorithm.

SC@RUG 2020 proceedings

17

3.4 Edge Clustering-Based Division

The algorithm proposed by Radicchi et al. [6] is very similar to the
previously proposed algorithm proposed by Newman and Girvan, and
builds off of a similar division method in order to separate the differ-
ent community structures within the network. The primary difference
in this case is the means by which various edges within the graph are
selected for removal. Where the Newman et al. used a measure of ‘be-
tweenness’ to determine which edges to cull, the algorithm proposed
by Radicchi et al. calculates an edge clustering coefficient for each
link in the network.

The edge clustering coefficient is very similar to a node clustering
coefficient, with the only major difference being that it is applied to
graph edges rather than vertices. To determine the coefficient for each
edge, the algorithm calculates the number of triangles to which the
edge belongs, divided by the number of triangles to which it could
belong. Specifically, Radicchi et al. describe the clustering coefficient
(C) for the edge between vertices i and j (Ci,j) as

Ci,j =
zi,j

min[(ki−1),(kj−1)]
(1)

where zi,j is the number of triangles in the network built using the
edge, and min[(ki - 1),(kj - 1)] is the maximum possible number of
triangles that could be built using the edge [6]. Since within clusters
of vertices in a graph there will be numerous triangles, especially as the
interconnectedness of a community increases, this is a good measure
of the structure of a community within the graph.

This measure is then used by the algorithm, in much the same way
as the previous algorithm proposed by Newman et al. to divide the
network into smaller and smaller community structures and produce a
hierarchical layout of the communities within the network. A variant
dendrogram chart produced by this algorithm can be seen in figure 5.

Fig. 5. A view of a network dendrogram representation of various com-
munities detected by the Edge Clustering Detection algorithm, taken
from [6].

This algorithm, as it must calculate this coefficient for each edge
based only on each other adjacent edge has a computational complex-
ity roughly on the order of O(n2), which is indicative of a fairly sig-
nificant decrease in complexity and a relatively substantial increase in
performance. As such, this algorithm is more efficient, while remain-
ing approximately as effective as the algorithms proposed by Newman
et al.

4 ANALYSIS

4.1 Methodology

Each algorithm presented above was compared using 3 different mea-
sures; the first, computational complexity, is a measure of how inten-
sive an algorithm is to process, as well as how the size of the input
affects the processing time. It is generally measured in O(n) notation,
with the function O representing the time-scaling factor or approxi-
mately how much the algorithm’s computation is affected by its input
n [5]. The second measure was accuracy, namely how successful was
each algorithm in detecting groups given any data set? Did this ac-
curacy change depending on the size or structure of the set? This is
obviously an important point to ratify, as the accuracy of an algorithm
can heavily influence its usefulness to a user. The final measure, ease
of implementation, was a measure of the structural complexity of the
algorithm, how difficult it is to actually code and implement on any
device. This measure is essentially simply a look at the structure of
the algorithm itself and the steps required to complete its calculations.

For the most part, each measure was provided within the papers
proposing the algorithms themselves. Most of the papers included an
overview of the computational complexity, and all provided an analy-
sis of the accuracy of the proposed algorithms. The complexity of the
algorithms that did not have a value provided was roughly calculated
from the design of the algorithm itself. The ease of implementation
measure was estimated by reading through the description of the al-
gorithm’s process provided in the paper, and simply checking to see
how many different steps, exceptions and logical comparisons are be-
ing made by the algorithm. A simpler implementation would have less
of any or all of these, while a complex algorithm may have multiple
interconnected steps. This of course means that there is a modicum of
bias inherent in determining the last measure, but for this reason, we
have provided a general overview of each method in their own sections
above so that a reader may determine for themselves if an algorithm is
more difficult to implement than another.

For our analysis, each measure listed above was given a differ-
ent weighting based on its importance to a potential user. The first
measure, computational complexity, was provided a moderate weight-
ing. This is because while it could heavily impact the use of an algo-
rithm, unless the computational complexity is so inefficient that even
small network inputs would take orders of magnitude of time most
algorithms should still be entirely usable even if they are inefficient.
The second measure, accuracy, is the most important, and is there-
fore weighted as such. Evidently, if the algorithm cannot properly
detect groups or clustering within the network, it is not a useful algo-
rithm for this task. However, for the most part, we expect that this will
also likely be the measure that changes the least between the different
methods we have analyzed. Finally, the third measure, ease of imple-
mentation, is given the least weight in our analysis. This last measure
was not only fairly dependant on the individual implementing it, but
we also expected it to act more as a means of providing distinction
between algorithms that perform very similarly in the other two cate-
gories.

4.2 Discussion

Among the algorithms analyzed by this paper, the divisive algorithms
proposed by Radicchi et al.[6] and Newman et al.[4] proved to be the
most computationally intensive, generally providing solutions with a
computational complexity of O(n2) or O(n3).As a result, these algo-
rithms become untenable for larger networks, as their processes scale
exponentially with the number of nodes. The agglomerative and opti-
mization algorithms proposed by Blondel et al.[1] and Clauset et al.[3]
fared much better however, with algorithms that operated with a com-
putational complexity of approximately O(nlog(n)).

An Overview of Community Detection Techniques in Graph Analysis – Alpheaus Feltham and Vinayak Prasad

18

All algorithms were able to accurately detect various levels of
grouping within numerous different kinds of networks. Each method
was able to appropriately identify groups and communities and ana-
lyze the network structure of both known test networks, and networks
built from real data. As such, accuracy was a moot benchmark for this
investigation, with each algorithm performing similarly, though this
was to be expected. In each case, implementation was generally feasi-
ble, though there was more variation among the proposed algorithms,
none of the solutions were overly complex, and generally implemented
only a few fairly basic steps and generally simple equations. As such,
the implementation methods should be taken into consideration on a
user-by-user basis, and will mostly hinge on personal preference.

5 CONCLUSION

The most important factor then, was the computational complexity of
each algorithm, as when attempting to analyze modern networks, po-
tentially with hundreds of thousands if not millions of nodes, process-
ing time will be a major hurdle for less-optimized processes. Given
this, the computational complexity of each algorithm should be the
primary indicator for an optimal algorithm, at least when the intended
use is the analysis of networks of massive scales.

As such, these algorithms would operate much more effectively on
larger networks, such as the ones that might be of greater interest in the
modern era. Given these findings, it is recommended to use algorithms
such as those proposed by Clauset et al. or Blondel et al. in order to
obtain the most efficient results.

REFERENCES

[1] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast un-
folding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[2] R. Cazabet and G. Rossetti. Challenges in community discovery on tem-
poral networks, 07 2019.

[3] A. Clauset, M. E. Newman, and C. Moore. Finding community structure
in very large networks. Physical review E, 70(6):066111, 2004.

[4] M. E. Newman and M. Girvan. Finding and evaluating community struc-
ture in networks. Physical review E, 69(2):026113, 2004.

[5] C. H. Papadimitriou. Computational Complexity, page 260–265. John
Wiley and Sons Ltd., GBR, 2003.

[6] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defin-
ing and identifying communities in networks. Proceedings of the national
academy of sciences, 101(9):2658–2663, 2004.

SC@RUG 2020 proceedings

19

High-Level Architecture of Serverless Edge Computing Networks
and its Requirements

Mark Soelman, Jaap van der Vis

Abstract—With the continuous rise of Internet of Things (IoT) devices with limited resources, computationally expensive tasks are often
performed by the device itself or moved to the cloud. For many of these devices and tasks the latency, network traffic, battery usage
and resource utilization need to be minimised. Both edge and serverless computing are considered relatively new fields of research
and the combination of these paradigms proves to be promising within the field of IoT. Edge computing is a promising alternative
to processing on the same device or in the cloud, in which computational tasks are delegated to geographically near edge devices.
Serverless computing allows for dynamic execution of stateless functions without preallocating resources in advance, often through
third-party providers.
This paper contributes to these fields by researching various aspects of combining edge and serverless computing, by gathering the
requirements of a serverless edge network. Based on these, an architecture consisting out of three main components is proposed. The
first component comprises a data-oriented approach of deploying and executing functions, mainly focussing on traditional computational
tasks, as well as batch and stream processing. These are requirements for typical IoT use cases. The second component examines
the building blocks of an edge computing network, including roles and a orchestration scheduling function. Finally, the third component
introduces a lightweight proxy for dynamically determining if a function is best executed in the edge or in the cloud.

Index Terms—Edge, serverless, fog, latency, network, topology, Function-as-a-Service, platform, cloud, IoT, Internet of Things,
data-centred

1 INTRODUCTION

Since around 2010, the Internet of Things (IoT) has been gaining
a lot of interest from academia as well as from the industry. We
have arrived at the age in which some of its consequences are already
visible in our everyday lives. Major cities use security cameras with
face recognition to improve safety of their citizens, while citizens
themselves use smart home devices to improve living comforts. Soon
self-restocking refrigerators might become reality [16]. Autonomous
vehicles are already a reality to some extent, in the future vehicles might
be able to warn other vehicles or the relevant authorities for accidents
or road damage [12]. Within logistics warehouses, internet-connected
devices store and retrieve products [15]

The increasing interest and adoption of IoT posed new challenges.
Most IoT devices are constrained by limited resources and are there-
fore unable to access, process or store information required for the
device’s core functionality. As a result, a lot of the responsibilities of
IoT devices are moved to the cloud. However, as described in [9], some
of these devices require low latency for their computations. Others
may require low network traffic due to generating large volumes of
data and due to bandwidth limitations. IoT devices may also require
location awareness to access the closest servers, for example, to warn
nearby cars of road damage. For devices with at least one of the afore-
mentioned requirements, using the cloud is insufficient, and requires
another approach. Edge computing aims to overcome these limitations
of the cloud, by moving computation closer to these devices, i.e. to the
edge between the cloud and the local device. Although some prefer to
use the term fog computing, we stick to the term edge computing.

The use of edge computing opens up new possibilities for IoT devices
but poses new challenges as well. While the resources of edge devices
are less limited compared to IoT devices, efficient usage is required to
maximise the benefits of using edge nodes. The traditional model of
full-fledged virtual machines may offer more flexibility in their usage,
but do this at the cost of higher resource usage and long provision delays.
The serverless computing model aims to solve this by delegating the

• Mark Soelman of the Faculty of Science and Engineering, University of
Groningen, m.soelman@student.rug.nl

• Jaap van der Vis of the Faculty of Science and Engineering, University of
Groningen, j.s.van.der.vis@student.rug.nl

resource management of the edge nodes to a third-party provider. This
provider is responsible for provisioning and efficient resource usage,
which it can accomplish by adopting the Function-as-a-Service (FaaS)
model [3]. The FaaS model allows users to perform computations via
stateless functions, that the third-party provider runs in its environment.
Because the functions are stateless, there is minimal need for resource
allocation, thus decreasing the provision delays.

The serverless computing model is more efficient and has lower
latency compared to the traditional cloud computing model of using
stateful virtual machines as computational resources. Combining edge
computing and the serverless computing model allows for low latency
and efficient usage of the limited resources. Low latency is often valu-
able within the field of edge computing [2]. Efficient resource usage
is also important in this context, as nodes in the network have very
limited resources. Another advantage is that the stateless functions are
only restricted by the framework provided by the provider. The FaaS
model also allows users to perform computations agnostic of the archi-
tectural concerns of the servers, meaning that the user might not even
be aware of which edge node executes the computation. However, this
means that a serverless computing model requires a more sophisticated
architecture.

This paper aims to answer the following research question: What
are the requirements of a serverless platform for edge computing, and
how can such network be structured flexibly and dynamically? The
main contributions of this paper are as follows: (1) This work gathers
the requirements for a serverless edge computing platform. (2) Next,
this work discusses a serverless approach to orchestrate functions and
data on available devices in the network in a flexible manner with the
focus on data. (3) To facilitate orchestration, this paper elaborates on a
scheduling algorithm to determine the optimal machine for execution
dynamically. (4) Scenarios are discussed in which using the edge
would not be beneficial, while illustrating how a lightweight proxy
can determine if a function should be executed in the cloud or locally
during runtime.

This paper is structured as follows. Section 2 gives background
information on edge computing and serverless computing. Section 3
provides an overview of the requirements of a serverless edge platform.
Section 4 discusses a data-oriented approach of serverless function
orchestration. Section 5 discusses a scheduling algorithm for selecting
the optimal machine for the execution. Section 6 elaborates on choosing
between the cloud or the edge. Section 7 reflects on our work and

20

discusses our findings. Section 8 mentions related work. Section 9
concludes our work and provides suggestions for future work.

2 BACKGROUND INFORMATION

This section first describes the fundamentals of IoT. Then, it provides
a definition of edge computing. Finally, the concepts of serverless
computing are explained.

2.1 Internet of Things

As described by Atzori et al., the IoT is a paradigm for integrating a
variety of objects with the internet to reach a common goal and enhance
everyday lives [1]. These internet-connected objects often interact with
other objects or with users. An important aspect of this interaction is
that these devices aim to achieve autonomy. By integrating objects with
both the internet and the environment, they can take over tasks that
users would otherwise have to do themselves. While these devices were
initially simple, now they are generating increasingly higher volumes
of data and more often rely on machine learning algorithms. Because of
this trend, the cloud is often used as the main platform for computations,
discovering other devices and storing large amounts of data.

As mentioned earlier, this poses problems for a wide range of use
cases. An example use case where the increasingly more complicated
processing techniques could pose a problem is in autonomous vehicles.
An IoT connected vehicle could warn other vehicles about potentially
dangerous road conditions, e.g. wet roads that could cause aqua-planing
or holes in the road [8]. However, an application like this requires pro-
cessing power for assessing the situation and for whom this is relevant,
something that IoT devices might not have. A solution would be to
move the processing to the cloud, but this introduces a communication
latency overhead and lacks locality, meaning warnings might arrive too
late to prevent accidents. The cloud is a good platform for performing
computations that require more resources, but the latency overhead
and lack of location awareness are problems that require a different
approach.

2.2 Edge Computing

Edge Computing is an approach for moving logic and data away from
the cloud due to the aforementioned constraints [9]. Thanks to the
proximity and the possible elimination of network bottlenecks, the re-
sulting network contains very low latency and high bandwidth between
prosumers and their servers. Low latency and high bandwidth give
prosumers access to more demanding resources with limited hardware.
In this paper, the term prosumer will be used to denote a device with
minimal hardware that can either produce or consume data. These
prosumers include, but are not limited to, IoT devices.

Although the focus of edge computing is to move away from the
cloud, the goal is not to replace it. Both the cloud and the edge can
be part of the same computing ecosystem as shown later in Section 6.
Instead, the edge acts as an intermediary between the cloud and geo-
graphically local prosumers. It is valid for prosumers to use the edge
for some purposes while using the cloud for others. Some examples
of common edge devices are as follows: a Network Attached Storage
(NAS) to provide fast and local access to data and services. A Network
Video Recorder (NVR) to record and possibly analyze video streams
without heavily using limited bandwidth.

Since the edge is conceptually similar to the cloud, its implications
might not be obvious at first. Therefore, we briefly mention its most
significant implied advantages and characteristics, as identified by [4,
19].

Proximity and Low Latency Thanks to the presence of edge
devices in the vicinity of the prosumers and users, responsibilities such
as storing or computing can be offloaded to these edge devices, without
having a significant impact on the latency. Furthermore, a prosumer
can easily find and communicate with other prosumers in the vicinity,
since other nearby prosumers connect to the same edge device.

Location Awareness Applications can find the geographic loca-
tion of prosumers, by locating the edge device that it is connected to
without explicit location logging. During an emergency, instructions or
warnings can be sent to on-site edge devices, that forward the messages
to all connected prosumers.

Geographic Distribution When the cloud is moved closer to the
prosumers, it is implied there is a large number of smaller distributed
clusters, instead of only a small amount of large clusters. For instance,
this property is useful when searching for a person using face recogni-
tion and within a large array of connected cameras, as described in [19].
The algorithm can be run only in the areas of interest on the data stored
there, instead of on a single large cluster with much more data.

Network and Cloud Offloading Since IoT is being applied to
increasingly more devices, the number of IoT devices is expected to
grow to the billions according to [19]. Because of this rapid growth,
network bandwidth could become a significant bottleneck.

Heterogeneity The role of the edge is not to eliminate the cloud.
Its role is to take over only some of the cloud’s functionality. Since
the reasons behind edge networks can differ, so can the composition
of edge networks differ. Some networks might be large and contain
lots of servers, while others might only have a few. Heterogeneity may
be present even within the same edge network. Some devices might
only serve as storage, while others act as processors, GPU servers, load
balancers, et cetera.

2.3 Serverless Computing
The serverless computing model is inherently connected to the FaaS
model. In the more traditional model of cloud providers, Infrastructure-
as-a-Service (IaaS), the management of virtual machines, operating
systems, and load balancing is the responsibility of the end-user. The
cloud provider only delivers the infrastructure. Next to IaaS exists
Platform-as-a-Service (PaaS), in which the cloud provider abstracts
all this away from the user. The user only provides their complete
application, which is then hosted by the cloud provider [13]. The FaaS
model is similar to the PaaS model, except the provider does not host
complete applications, but only provides an environment on which
functions can be executed [11]. The user only pays for the runtime
of the function and does not have to pay for the idle time of a virtual
machine.

A function consists of a small code module that is typically run on
a container (typically docker) with a maximum runtime. The small
code size increases the provisioning time, allowing for the rapid scaling
of functions and efficient resource usage. The rapid scaling is also
a significant benefit for the user, whose application can thus easily
handle irregular loads without having to employ idle virtual machines
in preparation.

The provider can also improve efficiency by choosing to allow in-
frastructures to go cold, which means to shut down containers that are
not recently used, making the resources available again. Lloyd et al.
describe four possible states of a FaaS cloud provider with regards to a
function:

1. Provider cold: The provider has not come across this function yet
and needs to orchestrate it from scratch;

2. VM cold: The provider knows of the function, but wants to deploy
it on a new Virtual Machine;

3. Container cold: The function is present on the VM, needs to be
deployed on a new container;

4. Warm: The function is located on the container, and can be
executed when necessary.

The latter states showed a significantly better performance compared to
the earlier [11].

3 REQUIREMENTS OF A SERVERLESS EDGE PLATFORM

Baresi et al. identify several requirements of a serverless edge platform,
which is the combination of edge computing and serverless comput-
ing [3]. In this section, we discuss the proposed requirements.

SC@RUG 2020 proceedings

21

Low-latency Computations Latency-sensitive or data-intensive
computations of client-side devices (e.g. IoT devices, mobile phones)
should be moved to the edge in the form of functions. This is similar
to the FaaS model in a cloud environment. The advantage of the edge
is the lower latency of local edge nodes compared to the cloud [3].
Off-loading computations to external devices makes it possible to work
with applications that require powerful computations on (potentially
weak) client-side devices. A second advantage is the reduced resource
usage on the client-side device.

Collaboration between Server Levels When an edge node does
not have available resources for a function, it should either assign
functions to other edge nodes or move the function to a higher server
level, e.g. the cloud. Edge nodes function as self-organising entities
(SEPs) and work together to facilitate the execution of functions. Each
node, including the cloud nodes, communicate their capabilities and
latency. Based on this information the node which can execute the
function the fastest or most efficiently is selected, thus increasing the
overall throughput [3].

Coordination via the Edge Location-aware edge nodes should
offer a publish-subscribe service, through which nodes (both edge and
cloud) can react to events of other nodes. This allows for coordination
between different devices, edge nodes, and cloud nodes. A typical
example is V2V coordination, where edge-to-edge coordination can be
used for vehicles to communicate, while edge-to-cloud coordination
can be used by emergency services to react to accidents within a larger
geographic area [3].

Latency- & Network Traffic Optimisation To optimise latency
an efficient communication protocol like WebSocket should be used
instead of HTTP. The HTTP protocol comes with significant overhead
compared to more modern communication protocols like WebSocket.
The WebSocket also allows back-and-forth communication, since a
connection is persistent [3].

A Workflow- and Caching Service can reduce the network traffic
when multiple functions need to be executed sequentially or on the
same data. Whenever function composition is needed, the Workflow
Service can be used to route the intermediate results from one function
to the other, rather than sending the intermediate results via the client to
the next function [3]. In case multiple functions rely on the same data,
the Caching Service can supply the data to the functions, preventing
the client from having to send the same data multiple times [3].

Network Usage Optimisation Edge nodes can be used to prepro-
cess and filter large volumes of data, the results of which can then be
sent to cloud nodes. This preprocessing and filtering prevents large
amounts of raw data being sent to the cloud nodes. Only data of interest
is sent. [3].

Similarly to the previous requirement, this method attempts to opti-
mise network usage. However, as discussed in the second requirement,
some processing requests could be too large to handle for the current
network. Therefore, collaboration between server levels is required in
order to ensure stable latency. Thus, processing tasks are split between
the edge nodes with potential off-loading to the cloud nodes [3].

Stateful Partitions While a big advantage of the serverless model
lies in stateless functions, a temporary stateful partition can serve
some use cases that cannot be efficiently handled by these stateless
functions. Temporary stateful partitions are less restricted in resource
usage compared to cloud functions. A Stateful Compute Service is
responsible for the provisioning of temporary stateful partitions and the
routing of requests [3]. A typical use case would be an online game
where players can play against other players nearby. All the players
connect to a temporary stateful partition on a nearby edge node. The
communication requests are routed to the correct container by providing
a session token that is unique to this container [3].

4 DATA-ORIENTED FAAS ORCHESTRATION

In Section 3 the requirements of a serverless edge platform were de-
scribed. In this section, we discuss the Fog Function, which addresses
several of these requirements.

For data-intensive batch and stream processing applications, Cheng
et al. propose a data-centric programming model called Fog Function,
supported by a context-driven orchestration mechanism [6]. In the
coming sections, we further elaborate on the Fog Function and context-
driven orchestration.

4.1 Fog Function
A Fog Function is a data-oriented function that has relaxed lifetime
and resource constraints compared to FaaS functions. Instead of being
event-driven, as is usually the case for FaaS, the orchestration of Fog
Functions is data-driven [6]. Whenever one or more new data entities
arrive to which a Fog Function is subscribed, the Fog Function is started
and subscribes to the corresponding input streams.

Data-driven orchestration reduces network usage and latency by
making it easier for multiple Fog Functions to use the same data entities.
This can help migrate functions between edge nodes or to the cloud.
It also makes it possible to save the intermediate or final results as
separate data entities, which can be used by other Fog Functions [6].
As described in Section 3, the intermediate results are sent directly
to the next function in the chain without passing to the client, thus
reducing network usage.

4.2 Context-Driven Orchestration
Context-driven orchestration uses a management node. This manage-
ment node consists of a Discovery and Orchestrator component and
handles data entities and Fog Function orchestration. Each edge node
has a Broker and a Worker. The Broker saves data (input, intermediate,
and output) as entities, while the Discovery keeps track of all created
entities and nodes. The Orchestrator is responsible for assigning actions
(combinations of functions and input data) to Workers [6].

The orchestration and scheduling of actions depend on three contexts,
namely the Data context, System context, and the Usage context, which
are illustrated in figure 1. Contexts are not constant but change over
time, which implies several responsibilities for the management node:

• Usage context: Keep track of the registered Fog Functions. When-
ever a new function is added, the Orchestrator registers it and
subscribes to the specified input data in the Discovery.

• Data context: The Discovery keeps track of all data entities saved
by the Broker. When an entity is added to which the Orchestrator
is subscribed, it assigns the corresponding Fog Function to an
edge node.

• System context: Keep track of the edge nodes and their available
resources. When an edge node is changed, added to, or removed
from the system, a Fog Function might have to be reassigned to
another node or the cloud. This can either be because the node is
unable to finish the function due to lack of resources, or because
using another edge node can improve latency [6].

The management node is a crucial part of the context-driven orches-
tration but is also a limiting factor. On a scale of hundreds of edge
nodes, the combination of Fog Functions and context-driven orches-
tration can increase system efficiency by 95% and reduce latency by
30% in comparison to a normal edge function [6]. However, for larger
systems, Discovery and Orchestration become a limiting factor and
have to be decentralised [6].

Producer Computing Network Consumer

Management Node
UsageContext

Da
ta

Co
nt
ex
t System

Context

Fig. 1. Context Tracking, redrawn from [6].

High-Level Architecture of Serverless Edge Computing Networks and its Requirements – Mark Soelman and Jaap van
der Vis

22

5 SCHEDULING FUNCTION EXECUTION

In Section 4, we described a high-level approach for orchestrating func-
tions on the cloud with the focus on data. Now that we discussed how
functions are executed in a serverless manner, an important question
remains: Where should these functions be orchestrated on? To be more
specific, on what edge device? This question is answered in two parts:
Firstly, we elaborate on the network topology. Secondly, we discuss
algorithms for choosing the edge device that perform the computations.

Section 2.2 highlighted the heterogeneous nature of the edge. As
explained here, some edge devices serve different roles, e.g. compu-
tations or storage. However, even devices serving the same role could
be fundamentally different. One device might have significantly more
resources than the other. Another device could be closer to the pro-
sumer than others with lower latency. Yet another device might be
online for a couple of hours during the day to save on energy usage,
while others might be online 24/7. Since the edge is heterogeneous
and more dynamic than traditional cloud networks, this requires new
network topology and selection algorithms, as discussed next. We
created Figure 2 to illustrate an example edge network topology.

5.1 Network Topology
Since the edge acts as a dynamic, flexible substitution of the cloud,
distributed responsibilities are required. Distributed responsibilities
ensure that edge devices are allowed to fail or be turned off at any time.
The building blocks of an edge network are described per responsibility.
Every node in the network can have any combination of one or more
responsibilities. The topology is based on the structures of Cheng et
al. [6] and Cicconetti et al. [7].

Prosumer A prosumer or client is a device making use of the
services provided by the edge network. A prosumer can either produce
data for further processing by the cloud or edge or consume data pro-
vided from the cloud or edge. Prosumers contact the service discovery
to find the router with the lowest latency, i.e. closest to its location.
This can be seen in Figure 2. Function orchestrations are submitted to
the closest router.

Server Servers in the edge network are defined as heterogeneous
devices providing services to the prosumers. Examples of these are:
processing server, GPU server, load balancing server, proxy and storage
server. Since different servers have different capabilities, they publish
their capabilities and notify their availability to the Service Discovery
(see Figure 2).

Service Discovery Prosumers, servers, and routers notify the ser-
vice discovery when they come online. The service discovery will
then record their availability in its registry. Multiple service discovery
instances may be present in the same network. All service discoveries
exchange their registries of online services, so they all share the same
information for fault-tolerance. Figure 2 shows this exchange of reg-
istries between service discoveries. A secondary task of the service
discovery is to forward and update the registries to the routers, so these
routers also know who is online within the entire network and the
capabilities of these servers.

Router Each router maintains the same service registry, as for-
warded by the service discovery. The router performs periodic heart-
beats to all services, to keep track of their latency. Separating these
latency checks is important, since network partitions may occur and
the latency to each service may be different throughout the network.
Prosumers submit their function execution requests to the nearest router
since this router has the most accurate latency information for the
nearest prosumers. This concept is further elaborated by Cicconetti et
al. [7].

5.2 Selection Algorithms
Once a function request arrives at a router, it must select a server to
forward it to. The ultimate goal is to have the lowest latency on average
over all function requests. The following selection algorithms were
discussed by Cicconetti et al., which we reiterate: Random-proportional
selection, Least-impedance selection, and Round-robin selection [7].

Service
Discovery

Service
DiscoveryRouter Router

1. Registry
Exchange

2. Notify
Availability

ServerServer

Service
Discovery
+ Router

Server Server

Prosumer

ProsumerProsumer

Prosumer

3. Find
Routers

4. Execute
Function

Fig. 2. Edge Network Topology

These selection algorithms are based on weights per server: the cost to
execute the function in terms of time.

Smoothed Average Weight Updating A common and effective
way of updating the weight is by applying the smoothed average. For-
mula 1 describes the new weight w of server s at t1, based on the old
weight and the new latency δd(t1). Here, α is a constant smoothing
factor.

wd(t1) =

{
∞ if unreachable
αws(t0)+(1−α)δs(t1) if reachable

(1)

Random-Proportional Selection Each server is given the follow-
ing chance of being selected: 1/ws. A random server is picked for the
function execution, although servers with the lowest weight (average
latency) have the highest chances of being selected. Because of the
random factor, this algorithm also balances the load.

Least-Impedance Selection The router forwards the request
to the server with the lowest weight. This is a simple and greedy
algorithm. The main disadvantage of this approach is that multiple near-
simultaneous requests are all forwarded to the same server, causing load
spikes and possibly a significantly increased latency because of these
spikes. For simple set-ups this might suffice, otherwise an algorithm
with load balancing should be used.

Round-Robin Selection Based on the registry of services and
weights, the router creates and maintains a list of appropriate destina-
tions and a count c of how often they have been selected:

A = {(s,c)|ws ≤ 2minws,c ∈ N0}.
Every request, the server with the lowest count is selected, and the
count is increased. If the weight becomes too large, it is removed from
the list, and re-admitted with count 0 once the latency is back within
the given range. This algorithm balances the load over only a subset of
the servers.

6 CHOOSING BETWEEN CLOUD VERSUS EDGE

While introducing the concepts of edge computing in Section 2.2, a
strong emphasis was put on the edge not being a substitute of the cloud,
but rather a complement. For some cases, only relying on the edge is
inadequate. Below, we mention some examples for which this is the
case:

SC@RUG 2020 proceedings

23

• There are no edge devices with the required (hardware/proprietary
software) capabilities for the given task.

• There are edge devices capable of processing the given task, but
they are offline or experiencing high load.

• A large data set required to process the given task is not stored in
the edge, and transferring the data set is too expensive.

One solution could be to specify per function if it should be executed
in the edge or cloud. This approach could be sufficient for small
applications, but it does not come without disadvantages. First of
all, it requires extensive performance testing for each function, to see
what environment yields the lowest latency. This should not only be
performed once but every single time a function is changed or a new
function is written. Secondly, manual hard coding assumes the edge is
static, while in fact, devices may be added or removed at any point [6].
While the latency may be lower for executing a function in the edge
at some point, it may be higher (or infinite) at a later time, due to the
changing resources at the edge. Lastly, the edge might be unreachable
from the prosumer. To overcome these limitations, a dynamic decision-
making approach is desired.

Since we assume the cloud and the edge are primarily being used for
serverless function deployment, switching between the two requires no
complicated or time-intensive migration of containers, for instance. The
prosumer only needs to change the destination of where the function
execution request is sent to. As no changes are required by the servers,
our serverless edge architecture can be easily extended to support
dynamic function forwarding. In the following, we discuss adding a
proxy for forwarding requests and an algorithm to select the edge or
cloud.

6.1 Edge or Cloud forwarding using a Proxy
A paper by Pinto et al. discussed the usage of a proxy between a client
and multiple servers [18]. This proxy evaluates past executions of
the same request type per environment. Based on the latency between
requesting the function execution and the time taken to return the results,
the proxy decides where the next function should be executed.

We similarly extend our architecture by applying this proxy pattern.
Instead of deciding what server should execute the function, the proxy
decides on the environment. In our architecture, this proxy is located in
between the prosumer and both the edge and cloud environment. All
function requests go through the proxy. Moreover, function forwarding
should be its sole purpose. The proxy should be lightweight and does
not act as a load balancer.

6.2 Forwarding Algorithm
As described by Pinto et al, there is an important trade-off between
exploration and optimisation to consider for our forwarding algo-
rithm [18]. Within the field of probability theory, this is a well-known
problem since the 1930s and is referred to as the Multi-Armed Bandit.
This trade-off is briefly discussed in the next paragraph. For further
reading and more solutions to this problem, the reader is referred
to [5, 20].

The Multi-Armed Bandit problem describes the trade-off between
exploitation and exploration. Exploitation refers to picking the best out
of all options, based on the information at hand, to minimise regret.
In contract, exploration refers to making a sub-optimal decision to
obtain more information, while hoping this unexplored option might
be the (new) best. Within the context of our forwarding algorithm,
exploitation means forwarding a request to the environment with the
lowest average latency based on previous measurements. Exploration
means forwarding a request to the alternative environment, of which
we think will yield a higher latency. Exploration is important for our
forwarding algorithm, since the environments, especially the edge, will
constantly change in terms of computational capabilities.

at = Pt−1(a)+

√
2log(t−1)

Nt−1(a)
(2)

Pinto et al. compared multiple forwarding algorithms by running
various experiments [18]. The UCB1 algorithm turned out to have

the best results for choosing between execution on the edge and cloud.
The UCB1 algorithm, which is a variation of Hoeffding’s Inequality, is
shown in Equation 2. at denotes the score of choosing action a at time t,
which is incremented for each function execution request. Each action
a represents an environment, i.e. the edge or cloud. The first term is a
score for exploitation. Pt−1(a) is the probability that action a will result
in the best latency, based on the previous latency’s for all options so
far. The second term is a score for exploration. Nt−1(a) is the number
of times action a has been picked, thus the second term ensures that as
time progresses, a sub-optimal environment is explored. While some
requests might use a sub-optimal server, the overall performance is
stable and changes in the environment are acted on accordingly by the
proxy.

7 DISCUSSION

The performance of the suggested solutions and prototypes referenced
in this paper are not always properly compared to existing solutions
in the industry. To make a correct comparison, we need to establish
a performance baseline that represents reality correctly. Furthermore,
all comparisons to this baseline should use the same dataset, to ensure
consistency of the results.

This work discussed the usage of Fog Functions in Section 4. Cheng
et al. developed a software framework FogFlow1 with adapted settings
to orchestrate Fog Functions. Cheng et al. analyse the performance of
this framework in an edge environment based on various aspects, such
as startup latency, migration latency and throughput [6]. While this is a
representative analysis of the Fog Function presented in this paper, it
lacks a baseline of existing serverless orchestration frameworks such
as those used for the cloud. Therefore, to the best of our knowledge,
a sound comparison of the performance of Fog Functions in the edge
with serverless frameworks of the cloud is still nonexistent.

Pinto et al. performed a quantitative analysis on having a proxy to
switch execution between a local network and a cloud network [18].
Since we integrated a similar component in our own architecture in
Section 6, this analysis provides an indication of the performance of
our proxy as well. However, Pinto et al. unfortunately do not establish
a proper baseline in which all requests are executed on the cloud.
Therefore, the average speed-up of including this proxy, as opposed to
an architecture without it, is undetermined.

We can extend the proxy component discussed in Section 6 further to
allow for horizontal communication between serverless edge platforms,
which was discussed by Baresi et al. [3]. While horizontal communica-
tion can speed up requests, the same is true for forwarding them to the
cloud. In both contexts, latency increases due to the communication
with external networks. Furthermore, there is no guarantee that another
(horizontal) serverless edge platform can process a request, if the local
platform cannot process it. A benefit of this approach is that horizontal
communication can reduce the network load of the cloud servers signif-
icantly by communicating only with geographically nearby platforms.
However, we chose not to include this in our architecture, since it would
only be applicable in a very limited number of use cases, and it adds
a significant amount of complexity to the overall network structure.
Baresi et al. also included a prototype to test the performance based on
various metrics, but also did not include a proper baseline.

When the performance of a prototype was tested, this was done in
an experimental environment instead of in a (controlled) real-world
environment. Cheng et al. evaluated their prototype of the Fog Function-
based system using experiments performed on virtual machines from
Google Cloud [6]. Baresi and Mendonça and Cicconetti et al. did their
performance evaluation on in-house machines [3, 7].

The validity of the results could have been improved by perform-
ing more experiments in a real-world environment. Controlled testing
environments are important for making usable comparisons between
different solutions. Typically it is much easier to create such a con-
trolled environment in self-owned architectures like in-house servers,
but some of the typical conditions of an edge network (e.g. locality
of nodes) are difficult to simulate. Real-world experiments (possibly

1https://fogflow.readthedocs.io/en/latest/index.html

High-Level Architecture of Serverless Edge Computing Networks and its Requirements – Mark Soelman and Jaap van
der Vis

24

controlled) could give more information on the performance of the
prototypes.

8 RELATED WORK

Serverless computing and edge computing are both immature fields of
research, especially when both paradigms are being combined. Never-
theless, frameworks for these paradigms are already being developed.
Cloud providers offer their serverless infrastructure as a service, com-
monly referred to as FaaS. Google offers its Cloud Functions service2,
Azure has Azure Functions3, and Amazon offers AWS Lambda4. Func-
tions need to be written and deployed in a certain way, resulting in
vendor lock-in. More importantly, these serverless platforms can only
be used in the cloud, making them unsuitable for the edge.

Other well-maintained open-source frameworks are Apache Open-
Whisk5, Bitnami’s Kubeless6, OpenFaaS7 and Knative8. The perfor-
mance of all of these frameworks was extensively analysed for an edge
environment by Palade et al. and concluded Kubeless outperforms
all other frameworks, while Apache Openwhisk had the worst perfor-
mance [17]. Mohanty et al. and Kritikos et al. both evaluated and
compared the features of open source serverless frameworks, but did
not take edge computing into account [10, 14]. Taherizadeh et al. per-
formed an extensive analysis of the requirements of monitoring tools
for devices in the edge, as well as evaluating the features of existing
tools [21].

9 CONCLUSION AND FUTURE WORK

Serverless edge computing combines relatively recent paradigms to
create a computational network with characteristics that are interesting
for many fields, especially the Internet of Things. Based on the 6
requirements we gathered, we researched state of the art literature to
find the best practices for both paradigms. This included a fog function
to realise context-driven serverless function and data orchestration, by
keeping track of the usage context, data context, and the system context.
Then, four main roles of the participants in an edge network were
identified as prosumers, servers, service discoveries and routers. Out of
the three selection algorithms, round-robin yielded the best results for
minimising latency by maintaining a queue of active workers. Instead of
choosing between edge or cloud, a proxy can be added to dynamically
forward requests. This proxy can use the UCB1 algorithm to exploit
the best decision while exploring the sub-optimal decision once in a
while to check if they are still sub-optimal.

Future work could be to analyse whether there exist serverless frame-
works that satisfy the requirements we identified. Moreover, existing
frameworks could be extended by adding the architectural building
blocks discussed in this work, such as the fog function, having a role-
based network topology, improving selection algorithms or adding
integration with a decision proxy. Other future work includes research-
ing multiple levels of vertical communication between platforms, such
as having an edge network per building, city, province, or country.

ACKNOWLEDGMENTS

The authors of this work wish to thank all reviewers for providing
helpful comments and suggestions for improvement. Specifically, for
pointing out issues with references and paragraph structure, and for the
suggestion of a figure.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Computer Networks, 54(15):2787 – 2805, 2010. doi: 10.1016/j.comnet.
2010.05.010

2https://cloud.google.com/functions
3https://azure.microsoft.com/nl-nl/services/functions/
4https://aws.amazon.com/lambda/
5https://openwhisk.apache.org/
6https://kubeless.io/
7https://www.openfaas.com/
8https://knative.dev/

[2] L. Baresi, D. Filgueira Mendonça, and M. Garriga. Empowering low-
latency applications through a serverless edge computing architecture. In
F. De Paoli, S. Schulte, and E. Broch Johnsen, eds., Service-Oriented and
Cloud Computing, pp. 196–210. Springer International Publishing, Cham,
2017.

[3] L. Baresi and D. Filgueira Mendonça. Towards a serverless platform
for edge computing. In 2019 IEEE International Conference on Fog
Computing (ICFC), pp. 1–10, June 2019. doi: 10.1109/ICFC.2019.00008

[4] F. Bonomi and R. Milito. Fog computing and its role in the internet of
things. Proceedings of the MCC workshop on Mobile Cloud Computing,
08 2012. doi: 10.1145/2342509.2342513

[5] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends® in
Machine Learning, 5(1):1–122, 2012. doi: 10.1561/2200000024

[6] B. Cheng, J. Fuerst, G. Solmaz, and T. Sanada. Fog function: Serverless
fog computing for data intensive iot services. In 2019 IEEE International
Conference on Services Computing (SCC), pp. 28–35, July 2019. doi: 10.
1109/SCC.2019.00018

[7] C. Cicconetti, M. Conti, and A. Passarella. An architectural framework
for serverless edge computing: Design and emulation tools. In 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 48–55, Dec 2018. doi: 10.1109/CloudCom2018.2018.
00024

[8] Y. Huo, W. Tu, Z. Sheng, and V. C. M. Leung. A survey of in-vehicle
communications: Requirements, solutions and opportunities in iot. In
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 132–137,
Dec 2015. doi: 10.1109/WF-IoT.2015.7389040

[9] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed. Edge
computing: A survey. Future Generation Computer Systems, 97:219–235,
2019.

[10] K. Kritikos and P. Skrzypek. A review of serverless frameworks. In 2018
IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), pp. 161–168, Dec 2018. doi: 10.1109/
UCC-Companion.2018.00051

[11] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara. Serverless
computing: An investigation of factors influencing microservice perfor-
mance. In 2018 IEEE International Conference on Cloud Engineering
(IC2E), pp. 159–169, April 2018. doi: 10.1109/IC2E.2018.00039

[12] N. Lu, N. Cheng, N. Zhang, X. Shen, and J. W. Mark. Connected vehicles:
Solutions and challenges. IEEE Internet of Things Journal, 1(4):289–299,
Aug 2014. doi: 10.1109/JIOT.2014.2327587

[13] P. Mell, T. Grance, et al. The nist definition of cloud computing. 2011.
[14] S. K. Mohanty, G. Premsankar, and M. di Francesco. An evaluation of

open source serverless computing frameworks. In 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom),
pp. 115–120, Dec 2018. doi: 10.1109/CloudCom2018.2018.00033

[15] C. K. Nagendra Guptha, M. G. Bhaskar, and V. Meghasree. Design of
iot architecture for order picking in a typical warehouse. In 2018 3rd
International Conference on Computational Systems and Information
Technology for Sustainable Solutions (CSITSS), pp. 50–53, Dec 2018. doi:
10.1109/CSITSS.2018.8768752

[16] G. S. Nayak, C. Puttamadappa, et al. Intelligent refrigerator with monitor-
ing capability through internet. Int. J. Comput. Appl, 2:65–68, 2011.

[17] A. Palade, A. Kazmi, and S. Clarke. An evaluation of open source server-
less computing frameworks support at the edge. In 2019 IEEE World
Congress on Services (SERVICES), vol. 2642-939X, pp. 206–211, July
2019. doi: 10.1109/SERVICES.2019.00057

[18] D. Pinto, J. P. Dias, and H. Sereno Ferreira. Dynamic allocation of
serverless functions in iot environments. In 2018 IEEE 16th International
Conference on Embedded and Ubiquitous Computing (EUC), pp. 1–8, Oct
2018. doi: 10.1109/EUC.2018.00008

[19] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and
challenges. IEEE Internet of Things Journal, 3(5):637–646, Oct 2016. doi:
10.1109/JIOT.2016.2579198

[20] A. Slivkins. Introduction to multi-armed bandits, 2019.
[21] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski. Moni-

toring self-adaptive applications within edge computing frameworks: A
state-of-the-art review. Journal of Systems and Software, 136:19 – 38,
2018. doi: 10.1016/j.jss.2017.10.033

SC@RUG 2020 proceedings

25

Comparing Reference Architectures for IoT

H.F. Stegenga, A. Jakubovskis

Abstract—Over the last few years Internet of Things has been receiving more attention as it has multiple applications across different
industries. As the popularity of internet of things increases, so does the demand for a common reference architecture between IoT
devices. Multiple IoT reference architectures have been developed. However, the developer community has not agreed on a particular
reference architecture, but rather on multiple reference architecture for specific purposes. As the previous research on IoT reference
architectures is outdated, this paper focuses on summarizing four reference architectures - IoT ARM, RAMI 4.0, IIRA, Arrowhead - and
gives an up-to-date comparison between them. In the comparison, characteristics such as target audience, focus, interoperability and
security are analyzed and discussed. It has been found that the four reference architectures differ in their target audience, focus as
well as how abstract or detailed the reference architectures are. All of the reference architectures reviewed in the paper have security
and interoperability as their concerns, however, the approaches that ensure these qualities have been found to be very different.

Index Terms—Internet of Things, IoT, Architecture, Reference, Comparison

1 INTRODUCTION

The Internet of Things is often associated with many technologies
which make use of multiple interconnected small electronic micro-
controllers for various purposes. The decreasing costs of these devices,
sensors and actuators allow for internet connected systems which can
support us in many ways. A well known example of these devices, as
used today, are smart energy meters. These meters monitor the elec-
tricity usage and automatically send the energy usage to the electricity
company. They also provide functionality for keeping track of the en-
ergy usage per electricity group, so users can detect which parts of
their house consumes the most energy [20].

Not only can these devices be useful as energy meters, but they can
provide more functionality and services when they are connected with
each other and the internet. Smart Homes are a great example of this.
In smart homes many small electronic devices are connected together
to automate, for example, the lights and the heating facilities. For
instance, if connected to the internet, and thus your mobile phone,
they can detect when you are on your way home and automatically
start warming up the house. By using these technologies the energy
costs can be reduced.

Many industries and companies already make use of IoT technologies
[23]. For example, these technologies are being used to automate and
optimize their production facilities. In these situations the IoT de-
vices are used to monitor and subsequently optimize the production
efficiency, often to reduce the amount wasted materials or to guard
the quality of the product. Many companies are implementing these
technologies, because even a small increase in efficiency can lead to
significant money savings. An important aspect of many implementa-
tions of these devices is that they are connected to the internet, hence
the name ’Internet of Things’.

This paper focuses on exploring and comparing a few of the more well
known Internet of Things Reference Architectures. Existing papers,
such as [15][7][22], are outdated. They mostly discuss IoT Reference
Architectures on a high level and do not provide any details on how, or
even if, these architectures define important qualities of IoT networks.
We have chosen to analyze, discuss and compare based on four key
areas - focus, target audience, interoperability and security. Focus and
target audience key areas have been chosen as the audience for refer-
ence architectures can vary. Some are aimed at a more general audi-

• Hindrik S., E-mail: h.f.stegenga@student.rug.nl
• Andris J., E-mail: a.jakubovskis@student.rug.nl

ence than others, while others are more specific to certain industries.
In addition, the interoperability and security key areas are chosen as
they are of vital importance for IoT reference architectures, no matter
the industry which is targeted. The following Reference Architectures
will be analyzed, compared and discussed: IoT ARM, IIRA, RAMI
4.0 and Arrowhead.

2 STRUCTURE

Chapter 1 provides the introduction of the topic and introduces the re-
search issue of the paper. Chapter 3 focuses on background informa-
tion on the field of IoT and reference architectures in general. In Chap-
ter 4, the four reference architectures are analyzed in detail. Chapter 5
compares the reference architectures on the four key areas. Lastly, in
Chapter 6 the results are concluded.

3 BACKGROUND INFORMATION

In this chapter background information regarding IoT Reference Ar-
chitectures will be provided. We will first provide an overview of what
the challenges are within the field of the Internet of Things. Secondly,
we will provide an introduction to reference architectures in general.

3.1 The challenges in the field

Due to the many companies and industries using IoT, there are many
software implementations written for IoT systems, each with various
purposes and use cases. This means the ecosystem is highly frag-
mented. Even though these days many IoT specific standards and pro-
tocols exist [18], many software systems use different networking pro-
tocols and communication mechanisms, and interoperability is often a
problem.

More challenges in the field of the Internet of Things come from the
problems related to managing and using many small devices. Most
IoT devices are not very powerful, so they are not usually capable of
performing complex calculations. Therefore, these calculations have
to be done on another, more powerful, system, which means the de-
vice has to send the data. Managing a large amount of data coming
from many small IoT devices and processing all this data can be a big
challenge [21]. Another problem is that sometimes the IoT devices
are battery powered, which means that if large amounts of data needs
to be transmitted, the batteries are worn down much quicker. Next to
these problems, latency can also be an issue in some situations where
quick response are required.

26

Usability is another issue with existing IoT platforms. End-users often
need to be able to program the devices to do exactly what they want.
Therefore, expertise is often required to understand the IoT platform
and how to properly set up these devices. However, the situation is
improving for consumers, specifically for smart homes. Many prod-
ucts are available which offer seamless integration with, for example,
a platform like Apple HomeKit [1]. Such platforms offer easy way
to set-up the system where the end-user purchases compatible sensors
and actuators, which can be connected to the system.

Another important issue in the Internet of Things industry is related to
the security of the devices and related privacy concerns. Securing the
devices that control the heating or control the automated garage door is
crucial. To show an example, imagine that someone could hack these
devices and turn up the heat to dangerous levels while you are sleeping,
or could hack a wearable that controls your insulin pump. Therefore,
it is of critical importance that these devices are secured, especially
when they can be remotely controlled or have internet access. Privacy
is another issue, since installing IoT devices in our environment means
that a lot of data is collected. This data could be abused for tracking
people or advertisement purposes, which may have adverse effects on
the individual.

Another major problem is the fragmentation of the technology in gen-
eral; many hardware and software solutions are available for various
problems, but it is often unclear what the best solution might be for
a specific problem. A lack of standardization also causes problems,
making it harder and more error prone to connect IoT devices together.
IoT Reference Architectures try to solve all above mentioned problems
for specific target industries.

3.2 Reference Architectures

Reference architectures serve the purpose of providing a reusable and
well established guide for developing software architectures. They
provide the stakeholders of a software project with a generic and high
level abstract view of all the potential components and features in-
volved in their software project. This also includes non-technical
guides and descriptions for non-technical members of the software
project [16].

Reference architectures also provide a common framework and guide
for software architectures in their domain, in our case; the Internet of
Things. They primarily consist of a high level description of the most
common software components and techniques used in the domain. For
IoT these components include topics like communication, data collec-
tion and security, for example. Some of the reference architectures
might even provide a standard specification on how to implement cer-
tain components.

Another important part of reference architectures is that they usually
provide non-technical documentation as well. This includes terminol-
ogy, design decision guides and best practices and general directions
on how to fulfill the quality attributes of a project [16]. By using ref-
erence architecture as a guide, a software architecture can be created
which is easy to understand for anybody in the field. Therefore, by
using a reference architecture, this results in an IoT project will have
common terminology, components and features, hence promoting an
industry standard which is common between different projects.

Fig. 1. The relationship between reference architectures, software ar-
chitectures and the actual implementations. (Adapted from [16])

In Figure 1 the process of generating an architecture from a reference
architecture is visualized. More information on how to design a soft-
ware architecture based on a reference architecture can be found in
[6].

Due to their high level abstraction, many reference architectures are
aimed at specific target audiences or intended for specific purposes.
Therefore, many reference architectures do not try to cover the entire
IoT sector and software of it, but rather, a smaller subset of it. They
aim to give a high-level standardized way of designing software and
IoT infrastructure for their specific target audience and systems.

4 ANALYSIS OF REFERENCE ARCHITECTURES

In this chapter the reference architectures will be analyzed in detail.

4.1 IoT ARM

The first reference architecture to be analysed in this paper is IoT ARM
or otherwise known as IoT Architectural Reference Model. IoT ARM
has been derived from the IoT-A project. The origins of IoT-A project
come from 2009 when new promising applications of IoT started to
appear on crowd funding platforms which attracted attention of people
[6]. These IoT projects covered wide range of applications in different
industries. Therefore, it was challenging to come up with an reference
architecture that would be suitable for all domains. Nevertheless, a
common reference architecture was needed in order to ensure rapid
development of solutions that could be applied across various applica-
tion domains.

Thus, in 2009 a group of researchers from large industrial companies
formed a group to lay the basis for a common reference architecture
for the Internet of Things called Internet of Things Architecture project
otherwise know as IoT-A [6]. The main aim of this project was to de-
velop an architectural reference model for the interoperability of IoT
systems. Other focus points were to outline principles and guidelines
for the technical design of its protocols, interfaces, and algorithms [8].
With the introductions of IoT ARM several improvements came along.
IoT ARM provided language that could be use among developers and
architects. This facilitated the communication, therefore reducing mis-
understandings as well as projecting, development time as language
was linked to the architecture. Moreover, with the reference architec-
ture people who were new in the field could better guide them selves as
there was already a basis provided to develop their IoT solutions. Fur-
thermore, it helped to identify the independent systems blocks which
project managers could use to plan the road-map for projects.

SC@RUG 2020 proceedings

27

Fig. 2. Interaction of all sub-models within IoT ARM reference model [6]

IoT ARM consists of five sub-models. Figure 2 shows interaction of
all sub-models within IoT ARM reference model. The yellow arrows
indicate dependency between the modules. IoT Domain Model acts
as base model which establishes main concepts in the system such as
attributes and dependencies on a conceptual level. It uses high level
abstraction in order to be applicable for different industry sectors. IoT
Information Model defines structure of information within an IoT sys-
tem. IoT Functional Model contains groups of functionalities that al-
low for interaction with attributes and control the information associ-
ated with attributes. Functional model also contains two sub-modules
which are common for all types of IoT systems - IoT Trust, Security
& Privacy Model and IoT Communication Model. IoT Trust, Security
& Privacy Model enforces security in the system. Lastly, IoT Commu-
nication Model is responsible for ensuring communication in hetero-
geneous environment.

4.2 RAMI 4.0

Fig. 3. Three-dimensional model of RAMI 4.0 [9]

RAMI 4.0, or Reference Architecture Model Industrie 4.0, is a IoT
Reference Architecture which is aimed at industrial manufacturing
companies, primarily in Germany, which want to automate (part of)
their production lines. It is centered around the concept of "Industrie
4.0", which refers to the automation and optimization of the whole
process of manufacturing products, using IoT devices. The Industrie
4.0 movement makes use of many existing standards and RAMI 4.0 is
at the core of it [14]. Unlike most reference architectures, it is driven
by integration with business aspects and specification compliance. It
is developed and worked on by Zvei.org.

RAMI 4.0 is a service oriented reference architecture which consists
of a three-dimensional cube that describes the most important aspects
of Industrie 4.0 [19] [24]. A depiction of this can be seen in Figure 3.
There are three main axis in this model:

• The "Hierarchy Levels" axis:
The hierarchy levels are defined by those as specified in [11],
which is the international standard series for enterprise IT and
control systems [9]. This has been extended to include "product"
and IoT under the term "Connected World".

• The "Life Cycle & Value Stream" axis:
The bottom horizontal axis describes the life cycle of facilities
and products, and is based on [12] and [10]. On top of the IEC
standards, it makes a distinction between types and instances.
A type can be thought of as a in-development product, and an
instance is when the product is completed and actual production
has started.

• The "Layers" axis:
The layers on the vertical axis represent the decomposition of a
machine into separate layers which represent certain properties
of it. The layers map to the different aspects of a given machine,
so, for example, the communication layer describes the commu-
nication with other devices and people.

RAMI 4.0 aims to integrate different user perspective by providing a
common understanding of the Industrie 4.0 technologies. It provides a
platform for creating industry wide specifications, standards and their
use-cases which are created by committees. Their aim is to develop
and integrate these standards in many different manufacturing indus-
tries to modernize the technology used by these industries [24].

4.3 IIRA

IIRA is a reference architecture designed for the Industrial Internet of
Things. The main purpose of IIRA is to ensure a standard in the in-
dustry that promotes interoperability between devices [13]. The IIRA
reference architecture document is mainly targeted for architects that
are already familiar with architectural concepts, patterns, frameworks
and reference architectures. Nevertheless, the document can also be
used by project, business and IT managers in order to get insights on
how plan the development process of IoT systems.

IIRA is a reference architecture with high abstraction level that does
not have a focus on the actual implementation. IIRA has been devel-
oped by analyzing and summarizing patterns, features and character-
istics from different use cases of the Industrial Internet Consortium,
otherwise known as IIC [13]. Each stakeholder in a system has their
own concerns and by combining these concerns the whole life cycle of
the product is covered. IIRA regards to 4 viewpoints: business, usage,
functional and implementation [13].

Comparing Reference Architectures for IoT – H.F. Stegenga and A. Jakubovskis

28

Fig. 4. IIRA viewpoints, system life-cycle process and applications
scope [13]

Figure 4 shows the relationship between IIRA viewpoints, applica-
tion scope in terms of industry sectors and system life-cycle processes
which are industry specific. As can be seen in this figure, by going
trough the viewpoints starting from business viewpoint in direction
towards implementation viewpoint, the decisions get more detailed.
The decisions made on business viewpoint are more highly-level ab-
stracted. The decisions on more highly abstracted viewpoints effect
the decisions on lowly-abstracted viewpoints.

4.4 Arrowhead

The Arrowhead Framework project is created by the Artemis group,
which is an association for embedded systems within Europe [5]. Ar-
rowhead is a reference architecture which specifically focuses on the
communication within and between networks of systems. It is cen-
tered around the concept of ’local clouds’, which are systems of sys-
tems [4] as depicted in Figure 5. Their primary goal two-fold: to en-
able interoperability between IoT components and to allow for easily
building systems of systems from individual components [3].

Fig. 5. The local cloud as defined in Arrowhead [4]

As mentioned previously, the concept of a local cloud is fundamental
in Arrowhead. The idea is that local cloud is a closed group of indus-
trial devices, which at the very least provide a set of basic networking
services, as can be seen in Figure 6. These services include service

registration, service discovery, authentication & authorization and or-
chestration of mentioned devices. Next to these required networking
services, devices can expose a multitude of other services. These are
called Application Systems/Services and may, for instance, include
functionality related to event handling and Quality-Of-Service (QoS)
management.

Fig. 6. Application services and systems in Arrowhead [4]

The group behind the Arrowhead reference architecture also provides
a set of source code implementations for Java and C++, which can
be used to easily create Arrowhead compliant code bases. They also
provide a so called cookbook, which essentially is a reference for the
Arrowhead reference architecture. There are also a set of libraries
available along with documentation, which make it easier to setup a
compliant software code base [2].

The project is still under development, and while the core foundations
are in place, a lot of implementation work still needs to be finished
before industry adaption can really begin. Last year a initiative has
been started which focuses on developing tools for allowing third par-
ties to develop and standardize their IoT software using the Arrowhead
reference architecture [2].

5 COMPARISON OF REFERENCE ARCHITECTURES

The reference architectures mentioned in this paper will be compared
on four key areas: focus, target audience, interoperability and security.
In the ’Focus’ and ’Target audience’ key areas we will be focusing
on what the target audiences and focus of each reference architecture
is, and in which way these correspond and differ between the differ-
ent reference architectures. For the ’Interoperability’ key area we will
discuss and compare how the reference architectures allow for devices
to interoperate with each other and to which extend the reference ar-
chitectures specify how the communication has to be handled. In the
’Security’ key area we will compare the different architecture based
on to which extend the reference architectures have specifications for
handling security related aspects.

5.1 General focus and target audience

The main purpose of IoT ARM is to introduce a common architec-
tural standard that would promote interoperability between IoT de-
vices, provide principles and guidelines for the technical design, ad-
dress scalability requirements while at the same time providing exam-
ples of real world use cases and benefits of using the reference archi-
tecture [6]. The target audience of IoT ARM is general. It includes
end users who want to deploy their IoT devices, system architects who
are concerned about the design of their IoT systems and IT manages
who are concerned with planning the development of IoT systems.

SC@RUG 2020 proceedings

29

The main purpose of IIRA is to provide guidance and assistance with
development, documentating, organizing and deploying IoT systems
[13]. The target audience of IIRA is primarily IoT system architects.
However, the document can be used by anyone familiar with general
architecture concepts i.e. business, IT managers or people who want
to better understand to develop IoT systems.

RAMI 4.0 focuses on the concept of Industrie 4.0. It aims to provide a
reference architecture for building Industrie 4.0 factories using IoT de-
vices. RAMI 4.0 unifies all the different specifications and standards
as defined by the Industrie 4.0 movement, by providing a reference
architecture for implementations using IoT Devices [9]. RAMI 4.0 is
not only aimed at software architects, but also provides documentation
for management and other business related personnel. This is covered
implicitly, since RAMI 4.0 defines many parts of itself, i.e. communi-
cation and security, using DIN and other specifications.

Arrowhead focuses on the concept of System of Systems, and the inter-
operability between the systems. The main target audience is compa-
nies which want to automate (part of) their production processes [4].
They aim to provide a reference architecture for implementing and
connecting multiple IoT devices into a connected system of systems.
These systems together provide some kind of functionality. Arrow-
head provides documentation and reference implementations of APIs
for developers and people interested in using the framework [2].

5.2 Interoperability

IoT ARM does not guarantee interoperability between two architec-
tures. However, it is possible to achieve interoperability between IoT
systems with use of IoT ARM. In order to do it, design decisions
have to be made that favor interoperability. IoT ARM also allows to
achieve interoperability after the system has already be made by build-
ing bridges that deliver the main functionalities of another systems or
by integrating a subsystem within another system [6]. Moreover, in
order to enforce interoperability patterns can be used such as applying
design techniques that facilitate change, reserving development envi-
ronments or building variation points into the software.

RAMI 4.0 specifies interoperability as part of it’s specification. This
is specified in the form of a service oriented architecture. More specif-
ically, communication between devices is specified in the communi-
cation layer of RAMI 4.0. In this layer the exact details of the com-
munication between all devices, which can provide services to other
devices, are specified. The communication between a specific device
and other devices is handled using a so called Administration Shell.
This is a small software layer that allows for inter-operation within the
network, and interfaces with the physical device [17]. For RAMI 4.0
this is a bit more complicated than most other reference architectures,
since the device can be a machine in a factory. This means that in
these cases the Administration Shell acts as a software abstraction of
the device, since the machine does not allow for native communication
with other devices within the Industry 4.0 based network. The actual
communication within the network itself is dependent on the specific
implementation, but they are guaranteed to be specified in one of the
Industry 4.0 specifications [14].

Arrowhead heavily focuses on interoperability between IoT devices.
The whole architecture is centered around Systems of Systems and
Services running on it. The architecture provides API standards and
specifies exact communication protocols for making guarantees re-
garding communication between the devices. Next to these communi-
cation protocols, it also specifies the concept of Services. Services are
pieces of software which run on the devices and provide some kind of
service to the System of Systems. There are three core services which
are mandatory for interoperability in a System of Systems: Service
Registration, Authorization and Orchestration. Together, these three
services provide the ability for any of the devices to inter-operate [4].

Next to this, the Arrowhead reference architecture also specifies more
complex features for communication. Examples of this are Quality of
Service, Broker and Event Handling features [2].

Interoperability is one of the key drivers of IIRA. By creating systems
according to IIRA reference architecture, the systems will be interop-
erable with each other. However, IIRA does not specifically mention
how is interoperability within IIRA achieved in their reference archi-
tecture specification. This is due to the fact that IIRA in general pro-
vides a more high level architecture description and does not provide
details about implementation of a system that is aligned with IIRA.

5.3 Security

IoT ARM reference architecture enforces security by IoT Trust, Secu-
rity & Privacy Model. The security model is made from three layers
- Service Security layer, the Communication Security layer and the
Application Security layer. These layers contain the following com-
ponents - Authorization, Identity Management, Trust and Reputation,
Authentication, and key exchange and management [6]. Moreover,
tactics that promote security can be used such as avoiding over-the-
air device management, securing communication infrastructure, phys-
ically protecting peripheral devices or considering peripheral devices
as available to malicious users in the attacker model.

The Arrowhead reference architecture has two major core services re-
lated to providing secure systems. These are the Authorisation and
Authentication services and they are mandatory on any Arrowhead
implementation. As their names imply, the responsibility of these ser-
vices is to provide authorisation and authentication services for the
rest of the network. This means that a new IoT device can only inter-
act with the network if it has correctly authenticated and is authorised
by any of the security-service-providing systems in the network. Ar-
rowhead specifies security features as additionally exposed services
on the IoT network. There are special service specifications available
for handling this. The most important ones related to security are the
Gatekeeper and Gateway v4.0 specifications. Essentially, they are in-
tended to be used for firewall purposes and therefore interactions with
other networks, and as such not necessarily part of every Arrowhead
implementation. Extensive documentation for these services and ev-
erything security for Arrowhead can be found at [2].

RAMI 4.0 tries to provide an entirely different view on security. On
the physical level it abstracts secure connections using the aforemen-
tioned Administration Shell. This shell provides not only a standard-
ized interface, but also functionality for setting up secure connections
with other devices. This means that any interactions with physical de-
vices, like manufacturing machines, goes through the Administration
Shell, which increases security [19]. The communication standards
themselves are based on existing specifications, as can be found at
[14] and [9]. The non-physical part of RAMI 4.0 which influences
security is handled by the ’Information’ and ’Communication’ layers.
These layers cover which data and whom may access a given piece
data. Together with the business layer, which provides the business
logic, security can be implemented using RAMI 4.0.

In order to facilitate security, IIRA uses the so called service network
which enables connectivity between services in platform and enter-
prise tiers of the system. The overlay of private network over the pub-
lic internet allows for enterprise level security. Moreover, the use of
adapters within the architecture not only allows for different type of
data model compatibility but also serves as a mean to isolate separate
system modules and bridge security domains [13].

Comparing Reference Architectures for IoT – H.F. Stegenga and A. Jakubovskis

30

IoT ARM

Audience
General - consists of end users who want
to deploy their IoT systems, system architects,
IT project managers.

Focus

Introducing a common architectural standard
that promotes interoperability, provides
principles and guidelines for the technical
design, addresses scalability requirements
and provides examples of real world use cases.

Interoperability

IoT ARM provides design decisions that
promote interoperability. However, it is the
system architect that can choose if they
want to follow the provided suggestions.

Security

Design decisions and their effect on the
system are provided. Therefore, system
architect can achieve security by
following design decisions that promote it.

Table 1. Summarization of the IoT ARM reference architecture

IIRA
Audience IoT systems architects and project managers

Focus
To provide guidance and assistance in the
development, documentation, communication
and deployment of IIoT systems

Interoperability

Interoperability is a key driver of IIRA,
however it does not specifically state
how interoperability is achieved. This is due
to the fact of IIRA being a high level
reference architecture.

Security

IIRA uses a so called service network which
enables connectivity between services in
platform and enterprise tiers of the system.
The overlay of private network over the public
internet allows for enterprise level
security. Additionally, the adapter pattern
can be used to encapsulate data in a subsystem.

Table 2. Summarization of the IIRA reference architecture

RAMI 4.0

Audience Manufacturing companies interested in
Industry 4.0

Focus
Providing a reference architecture for
implementing systems based on the
Industry 4.0 standards

Interoperability

RAMI 4.0 is a service oriented architecture
where each device has a so-called
Administration Shell. This shell
provides a software abstraction which abstracts
the functionality of the device, and
provides services to other connected devices.

Security

Defined on the physical level using the
Administration Shell, which provides secure
connections to other devices based on existing
communication standards. Defined on the
non-physical level by specifying the
interactions between the business,
information and communication layers.

Table 3. Summarization of the RAMI 4.0 reference architecture

Arrowhead

Audience Companies looking to automate
their production process

Focus
Providing a reference architecture for creating
interoperable and connected systems, called
System of Systems.

Interoperability

Defined by clearly specified protocols and API
standards. Uses a Services model with a service
registry, which allows devices to easily be
added to an existing connected network and
provide services to it.

Security

Arrowhead requires a System of Systems to
have a Authorization service available in the
network. This service is responsible for
accepting or rejecting devices from the network
by providing an authentication service, and
also provides authorization service for rights
management. Finally, external communication
is handled by optional Gateway and
Gatekeeper services.

Table 4. Summarization of the Arrowhead reference architecture

6 CONCLUSION

As IoT devices are more commonly used, the need for reference ar-
chitecture increases. In this paper four IoT reference architectures -
IoT ARM, RAMI 4.0, IIRA and Arrowhead - have been analyzed and
compared. In order to perform analysis and comparison between these
architectures, a literature review was performed on the most recent
versions of the reference architecture specifications, as the previous
research on this topic is quite outdated. Based on the literature review,
four focus areas have been chosen on which the reference architectures
have been analyzed and compared - audience, focus, interoperability
and security.

The results of the research can be found in Section 5, and tables 1, 2,
3 and 4. contain the summary of the comparison between the architec-
tures. It was found that the four reference architectures differ in their
target audience, focus as well as how abstract or detailed the reference
architectures are.

IoT ARM is a reference architecture that is aimed towards more gen-
eral audience and provides design decisions for designing the desired
system based on the quality attributes of the system. IIRA is applica-
ble towards different industries and the reference architecture specifi-
cation is abstracted on higher level compared to other reference archi-
tecture specifications. RAMI 4.0 is aimed towards service oriented in-
dustry and provides a guide for the digitization of manufacturing. Ar-
rowhead is applicable across multiple industries and provides a more
interoperability focused solution with a reference implementation.

As the previous research done on this topic was outdated, this papers
adds to existing literature an up to date comparison between four of
IoT reference architectures. Our research opens the possibility for
more detailed future research to be done on this topic with regards
to topics such as interoperability between the reference architectures.

SC@RUG 2020 proceedings

31

REFERENCES

[1] Apple, Inc. De Woning app configureren en gebruiken, 2020. https:

//support.apple.com/nl-nl/HT204893.
[2] Arrowhead. Documentation for Arrowhead. https://forge.soa4d.

org/docman/?group_id=58.
[3] Arrowhead. Why & How. https://www.arrowhead.eu/

arrowheadframework/why-how.
[4] ArrowHead.eu. Architecture. https://www.arrowhead.eu/

arrowheadframework/this-is-it/architecture/.
[5] Artemis IA. Artemis Industry Association. https://artemis-ia.eu/.
[6] A. Bassi, R. van Kranenburg, M. Bauer, S. Lange, M. Fiedler, S. Meiss-

ner, and T. Kramp. Enabling Things to Talk. SpringerOpen, 2008.
[7] E. Cavalcante, M. P. Alves, T. Batista, F. C. Delicato, and P. F. Pires. An

Analysis of Reference Architectures for the Internet of Things. 2015.
[8] "Cordis Europe". Internet of Things Architecture | IoT-A Project | FP7

| CORDIS | European Commission. https://cordis.europa.eu/

project/id/257521.
[9] Deutches Institut Fur Normung E.V. DIN SPEC 91345, April 2016.

[10] IEC. Batch Control, 1997.
[11] IEC. IEC 62264 Enterprise-control system integration, 2013.
[12] IEC. Life-cycle management for systems and products used in industrial-

process measurement, control and automation, 2013.
[13] "Industrical Internet Consortium". The Industrial Internet of Things Vol-

ume G1: Reference Architecture, Version 1.9, June 19, 2019, 2019.
[14] Industry 4.0. Industry 4.0 Standards. http://i40.

semantic-interoperability.org/.
[15] S. Krþo, B. Pokriü, E. Belgrade, and F. Carrez. Designing iot architec-

ture(s). 2014.
[16] G. Muller. A Reference Architecture Primer. Gaudí Muller, 2008.
[17] Platform-i40.de. RAMI 4.0. https://www.plattform-i40.

de/PI40/Redaktion/EN/Downloads/Publikation/

rami40-an-introduction.pdf?__blob=publicationFile&v=7.
[18] Postscapes. IoT Standards and Protocols, 2020. https://www.

postscapes.com/internet-of-things-protocols/.
[19] K. Schweichhart. Rami 4.0: An introduction. https://ec.europa.eu/

futurium/en/system/files/ged/a2-schweichhart-reference_

architectural_model_industrie_4.0_rami_4.0.pdf.
[20] Q. Sun, H. Li, Z. Ma, C. Wang, J. Campillio, Q. Zhang, F. Wallin, and

J. Guo. A Comprehensive Review of Smart Energy Meters in Intelligent
Energy Networks. IEEE, 2016.

[21] L. Wang and R. Ranjan. Processing Distributed Internet of Things Data
in Clouds. IEEE, 2015.

[22] M. Weyrich and C. Ebert. Reference Architectures for the Internet of
Things. 2016.

[23] L. Xu, W. He, and S. Li. Internet of Things in Industries: A Survey. IEEE,
2014.

[24] zvei.org. The Reference Architectural Model Industrie
4.0. https://www.zvei.org/fileadmin/user_upload/

Themen/Industrie_4.0/Das_Referenzarchitekturmodell_

RAMI_4.0_und_die_Industrie_4.0-Komponente/pdf/

ZVEI-Industrie-40-RAMI-40-English.pdf.

Comparing Reference Architectures for IoT – H.F. Stegenga and A. Jakubovskis

32

User Profiling in Smartphones from Applications

Satyanarayan Nayak, Swastik, and Baskaran, Siddharth

Abstract—In this technological era, where computation is at our fingertips, smartphones are one such device that has revolutionized
the human lifestyle rapidly. When encountered with such rapid changes, a question arises as to how aware the end-users are about
technology. User profiling is a term commonly used to describe a process of identifying data about a user. User profiling has proved
to be extremely useful in enhancing services, but on the downside, user privacy and ethical standpoint are questionable.
In this paper, we first describe the concept of user profiling, data collection techniques and types of data collected. Secondly, we will
discuss with statistical facts to understand how the advertisement libraries are exploited by the data brokers to gain access to user
sensitive data. Followed by the state of the art machine learning tools adopted by data brokers to re-identify anonymous data back
to its original owners to infer user attributes from the anonymous data that would otherwise be considered as garbage. We will then
discuss two techniques application containerization and AdSplit that is adopted to safeguard the end-user from user profiling.

Index Terms—user profiling, privacy, smartphones, advertising libraries, NLP, Machine learning.

1 INTRODUCTION

Data is the new oil 1, which has become a common refrain in this
technological era. Advertisement companies collaborate with data
brokers to execute targeted marketing. Data brokers are individuals or
organisations that collect sensitive user data and sell them as assets to
their consumers. In this competitive industry, there is a considerable
amount of pressure on the advertising agencies to improve their tar-
geted advertisement to the right set of users. Mobile devices contain
rich sensitive information about user attributes which users may not
be comfortable in sharing with advertising networks [3]. Apple’s
app store has around 1.8 million applications and Google’s Android
market has around 2.1 million applications as of Q1 2019 [3], and the
numbers are growing rapidly. In this competitive setting, publishing
applications for free and monetizing their applications through
advertisements is a common strategy adopted by the companies. The
free mobile application market alone is evaluated to be a 50 to 60
billion dollar industry2 and 90% of iOS App Store apps are free, as
are 95% of Google Play Store apps3. Key monetization strategies of
free applications are in-app purchases, in-app advertisements, email
marketing, and collection and selling of data4.

Smartphones have become an integral part of our lifestyle, and contain
rich information about the end-user. This information is stored to
provide the user with a rich and personalised user experience based
on their usage. This data is also collected by data brokers and are
used to categorise a user based on their interests, traits, app usage,
and so on. The collected data helps service providers to improve their
application and its services. From the viewpoint of advertisement
and service providers, they provide users targeted advertisements,
personalized recommendations based on user’s profiles. From the app
developer and designer viewpoint, it is useful to know user’s habits,
preferences or interests so that apps provide better recommendations
and adaptations to improve the user experience [8]. In the case of
opportunistic advertising libraries, a privacy loss is possible if the
library accesses private user information without the user’s consent
[3]. Due to the nature of the mobile OS, advertising libraries are

• Satyanarayan Nayak, Swastik, E-mail: s.nayak.1@student.rug.nl.
• Baskaran, Siddharth, E-mail: s.baskaran.1@student.rug.nl.

Manuscript submitted on 23 March 2020.
For information on obtaining reprints of this article, please send
e-mail to:s.nayak.1@student.rug.nl / s.baskaran.1@student.rug.nl.

1https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-
new-oil-and-thats-a-good-thing/

2https://rubygarage.org/blog/how-do-free-apps-make-money
3https://www.businessofapps.com/data/app-statistics/
4https://thinkmobiles.com/blog/how-do-free-apps-make-money/

given equal privileges as its host application, advertising libraries
exploit this to collect the user-data and transmit it externally to the
data brokers. The data collected violates the ethical boundaries but
cannot be deemed as a violation in the terms and conditions as the
advertising libraries and the application are treated as a single entity.
The collected data is used for user profiling, a context-aware process
of analyzing data to know more about the owner of the data. The
outcomes of the analysis are stored and sold as assets by the data
brokers. Some end-user use applications that promise anonymity
from external trackers, but the anonymous data is also not safe from
user profiling. Data brokers maintain a database of user data (user
profiling), and based on the application footprints of a user, a state of
the art machine learning algorithm like KNN, SVM or random forest
is used to predict or classify the anonymous user and categorize the
data into their respective user-profiles.

We will discuss the contribution of advertisement libraries towards
user profiling by studying the statistical analysis done in [3] using
Pluto, a modular framework for estimating in-app and out-app tar-
geted data exposure for a given app by simulating the data extraction
techniques used by advertisement libraries. Followed by the statistical
study done in [1], on how anonymous data is retraced back to its
owner and used for user profiling using machine learning techniques.

Some techniques can be adopted by mobile devices to safeguard their
user’s privacy from external trackers. Application containerization
is a technique that will run each sensitive application in an isolated
environment (container) of its own to ensure it stays hidden from
other applications. AdSplit is another such technique, that proposes to
run the advertisement library as a separate process rather than as a part
of the host application to ensure that the advertisement libraries do
not receive permissions of the host application, in-turn safeguarding
the protected folders of the host application.

This paper is organized as follows: We begin with understanding the
basic concept of user profiling in Section 2, followed by the main tech-
niques on how data is collected by applications on mobile devices in
3 and the different types of data that is collected and classified by the
data brokers in 4. In Section 5 the severity of user data that is exposed
through advertisement libraries is discussed with statistical facts and
in Section 6, the adoption of machine learning algorithms to trace the
anonymous user data back to the original user is discussed. In 7 we
see two promising techniques, application containerization and Ad-
Split that attempt to safeguard the user from user profiling.

2 USER PROFILING IN MOBILE DEVICES

User profiling from smartphones is a context-aware process of
analyzing application data, exploring the correlation of applications

33

with the user’s personal information, and extracting key features to
describe the characteristics and/or behavior of the user [9]. Inferring
demographics, personality, interests, preferences, and habits are
some of the key focus of user profiling [9]. The individual and/or
organization that collect user data and offer them as assets for
purchase are called data brokers.

Improving user’s mobile experience is the key agenda of user pro-
filing. It helps providers to improve mobile devices, applications,
and services. The insights derived from user profiling benefits dif-
ferent actors based on their point of views. An advertisement and per-
sonalized service agent provide targeted advertisements, personalized
recommendations, and other services for a seamless user experience
that is profitable and appreciated by the user. The developer also uti-
lizes the current community trends, user interests and habits to pro-
vide their users with a quality user experience. By understanding the
user’s needs, manufacturers tweak their smartphone design and fea-
tures to make sound decisions to deliver their users with appropriate
features, enabling for a close community-driven growth that has been
positively accepted by end-users. The pre-installed applications are
targeted based on the interests and needs of a community of users,
which leads to quality user experience and reduction of unappreciated
bloatware. Information collected for profiling is classified as user-
based information and application-based information.

3 DATA COLLECTION TECHNIQUES IN SMARTPHONES

As Android is very open in design, any app that is installed on a user’s
phone can easily check for the presence of other apps installed on a
phone. Analysis done by HideMyApp[2] shows that Android exposes
a lot of metadata as it is built to be easy for developers, which in turn
allows apps to be easily indexed and fingerprinted. A survey of over
2900 popular apps in the Google Play Store shows that around 57%
of these apps explicitly query for the list of installed apps. Android
classifies certain apps as potentially harmful which collect information
about other apps without users consent. Developers can surpass this by
simply providing a privacy policy that describes how the app collects,
uses, and shares user data. As per the analysis done by HMA[2], only
7.7% of the apps clearly declared that they collect the list of installed
apps in their privacy policies.

3.0.1 Fingerprintability of Android Apps
Based on the analysis conducted by HMA[2] an app can
easily check if a specific app is already installed on the
device. This is done by invoking two methods that An-
droid offers getInstalledApplications() and
getInstalledPackages() (hereafter abbreviated as getIA()
and getIP(), respectively); they return the entire list of installed
apps. An app granted with the READ EXTERNAL STORAGE per-
mission, a very common permission can inspect for unique folders
and files in a phone’s external storage. An app can also fetch the list
of all package names on the phone. This can be done by obtaining
the set of UIDs in the /proc/uid stat folder and using the
getNameForUid() API call to map a UID to a package name. An
app can also fetch the list of package names using the command pm
list packages and obtain the path to the APK file of a particular app
using the command pm path [package name]. Moreover, the
adb privilege which is used by developers for debugging enables an
app to retrieve the APK files of other apps using the command pull
[APK path] then the app can use other API methods such as
getPackageArchiveInfo() to extract identifying information
from the APK files. The analysis done by HMA[2] shows that
Android’s open design exposes a significant amount of information
that facilitates apps to fetch information by using fingerprinting
attacks. App developers themselves cannot obfuscate most of the
aforementioned information for the purpose of hiding sensitive apps.

4 TYPES OF DATA COLLECTED FOR PROFILING

Data collected by the data brokers are domain-specific, for exam-
ple, data related to the user’s installed application installation list will

speak about the category of applications the user is interested in. We
can differentiate the data into two categories namely user-based and
application-based information.

4.1 User based information for profiling
The data collected that is specific to the user’s behavioral footprint like
interests, traits. and activities are used to study the user’s psychologi-
cal state. Users with common interests are targeted by the vendors to
boost the quality of their services and profit margins.

4.1.1 Demographic attributes
The statistical study of the size, distribution, and structure of the popu-
lation is termed as demography. Age, gender, race, religion, life cycle
stage, nationality, occupation, income, education, and marital status
are some of the trivial demographic attributes that naturally belong to
an individual [9]. Targeted marketing to the right audience drives a
successful business. Key benefits of demographic analysis includes5 ,

• Understanding end-users and what their needs and expectations
are from the service provider.

• Develop new products to target a community of ideal users.

• Reduce financial risks and increase sales and profit margin.

• Identify new opportunities in the market.

4.1.2 Personal interests, traits, and psychological status
Object, events or process in which users tend to focus a lot are referred
to as personal interests [9]. Extraversion, neuroticism, agreeableness,
conscientiousness, and openness are referred to as the big fives that
understand an individual’s personality traits. Informative cues for un-
derstanding an individual’s psychology can be obtained through smart-
phones as they play an important role in the day to day activities of the
individual. For example, a user who has installed a significant amount
of gaming applications would be interested in relevant gaming-focused
advertisements. Collection and study of personality traits, interest and
psychological status of an individual will then be used to profile and
predict the behavior of the individual at a psychological and/or emo-
tional level.

4.1.3 Lifestyle
Smartphones track a user’s daily interactions and can fine-tune itself
to the individual’s needs. Fitness trackers and smartphones together
monitor the physiological status of an individual some of which in-
clude sleep cycle, cardiac rhythm, calories, and daily activities. For
example, by analyzing the location and time of the user over a while,
smartphones can infer the user’s daily activities and can automatically
set reminders. At different stages of life, the needs of an individual
changes, a study of individuals with similar age groups can reveal
some interesting cues. For example, during adulthood a successful
individual might be considering buying a new house, targeted news
about houses can be recommended accordingly.

4.2 Application based information for profiling
Applications collect a vast amount of data, and some of the data col-
lection policies are questionable. Android applications can access the
list of installed apps without any permissions [1]. iOS does not pro-
vide a public API that can fetch the list of installed apps, but the app
can make frequent scans of the currently running application and over
a while construct a list of installed applications [1]. The below sub-
sections will brief the different types of data collected by data brokers.

4.2.1 Application usage
Application usage directly translates to the user’s behavior, making it
one of the prime sources of information in user profiling. App usage
report includes the user’s interaction with apps, such as when an app is
launched or killed, up-time of the application, frequency of application
access [9]. App usage cues like duration and frequency is subjective

5https://smallbusiness.chron.com/examples-demographics-65678.html

User Profiling in Smartphones from Applications – Swastik Satyanarayan Nayak and Siddharth Baskaran

34

to the user’s unique usage pattern, this uniqueness makes it possible
to create a unique profile for different users’ and infer users’ based
on their characteristics. Event-driven collection and time sampling
schemes are two ways to collect user app information. The event-
driven collection will accumulate app usage data when a triggering
event occurs, such as application startup, notifications, request to an
external network, application shutdown. Time sampling scheme col-
lects app usage data at regular time intervals. For example, the app
usage records collected by Lausanne data collection campaign con-
tained start, close, foreground and view event information on Nokia
platforms over regular intervals [5][9]. A limitation of this collection
scheme is that crucial app usage data might be lost if the sampling in-
terval is set to a small value, an app running in the background, offline
applications that do have access to an external network.

4.2.2 Installed application list

A list of the installed application provides insights into the user’s
smartphone usage, the category of applications they are interested in,
for example, games, productivity, and management. For example,
someone who likes playing games will install games on their smart-
phone and someone who regularly exercises is likely to install fitness
applications.

Profiling based on application lists can be misleading as it is biased by
the usage of the applications. Statistical analysis in [6], states that only
10% of the apps were used 80% of the time, and less than 10 applica-
tions are used most of the time, suggesting that some applications that
are downloaded may not be used frequently. Capturing user’s daily
application usage along with the installed application list can improve
profiling accuracy.

4.2.3 Application metadata

App metadata is analyzed together with other types of application-
based information. The analysis is focused mainly on the description
and category of the application. App description, category, reviews,
ratings, and downloads can be classified as app metadata [9]. Based
on the category and description of the application collected from the
app store, the user’s intent of downloading the app is determined. App
metadata is generally extracted from the app store, with an exception
to the private data-sets that cannot be readily accessed.

4.2.4 Application installation behavior

Installing, uninstalling and updating provides insights into the user’s
interaction with a particular app or a category. Since installing and
uninstalling an application is done manually, it provides information
on understanding the user’s behavior towards a category of applica-
tions. Updating an application shows the interaction of a user towards
an app, users tend to update their frequently used application but the
inference made based on this data can be biased as users tend to switch
off their automatic updates and forget to update their applications.

4.2.5 Application interaction with linguistics user inputs

Voice assistants have been integrated to elevate the user’s mobile ex-
perience. Although these advancements are well appreciated, they are
accompanied by their downside. Google assistant is one such app
where the user can interact with their mobile phone using linguistics.
But the application stores user’s interactions and transmits this to po-
tential advertising agents that use this information to provide targeted
advertisements to the user6. Google does provide functionalities to se-
cure privacy, but it has become hard to trust the applications as users
are mostly unaware of the extent to which the app interactions are
monitored and saved for analysis.

6https://www.inc.com/jason-aten/google-is-absolutely-listening-to-your-
conversations-it-just-confirms-why-people-dont-trust-big-tech.html

5 USER PROFILING THROUGH ADVERTISEMENT LIBRARIES

Research on security and privacy have consistently demonstrated the
exploit of advertisement libraries to extract valuable and sensitive data.
Smartphones contain rich information about users that promote ad-
vertising networks to gather targeted data, sensitive information that a
user might not be comfortable in sharing is made available through ad-
vertisement libraries [3]. Advertisement libraries on Android have the
potential for greater data collection using unprotected APIs to learn
other applications information and using protected APIs via permis-
sions inherited from the host application to gain sensitive unautho-
rized information about the user [3]. We can confidently categorize
advertisement libraries as gray areas where the collection of user data
is questionable and borderline violates privacy terms and conditions.
Risk assessment tools that reveal the leak of sensitive data in an ap-
plication is hard to upkeep, as they employ static or dynamic analysis
of apps and/or libraries. For example, every time an advertisement
library is updated, or a new advertisement library is released, risk as-
sessment analysis must be performed again. And some advertisement
libraries load code dynamically allowing them to change their logic on
the fly [3]. In-app and out-app are two types of advertisement library
attack channels as shown in Figure 1.

Fig. 1. The illustration shows the two classes of attacks that are per-
formed by advertisement libraries on the mobile platform. In-app is an
attack performed over the permission-protected APIs and Out-app is an
attack performed over the public APIs.

5.0.1 Pluto
A modular framework for estimating in-app and out-app targeted data
exposure for a given app. Pluto has the privileges as an advertisement
library and it attempts to simulate the actions that an advertisement
library would perform in-order to estimate the data exposure from a
given app [3]. Pluto is geared to analyze the severity of in-app attacks
by utilizing dynamic analysis and natural language processing, and
machine learning technique is adopted to gauge the out-app attacks.

5.0.2 In-app attacks
In-app attacks are performed through protected APIs present within
the host application. Application on an Android will be assigned with
a unique UID that is used by the operating system to differentiate
between apps during their lifetime on the device. The UIDs during
execution are isolated from each other to ensure that one app cannot
access another app’s resources. The host application is given access
to the local storage, GPS, and other sensitive privileges based on the
UID that can be accessed via protected APIs. Any external access to

SC@RUG 2020 proceedings

35

these protected APIs is not possible, but the advertisement libraries’
embedded within an application will be assigned with the same UID
and privileges as the host application both in terms of Linux discre-
tionary access control (DAC) permissions and Android permissions.
Advertisement libraries can access the permission-protected APIs
on the device and the operating system cannot restrict advertisement
libraries privileges as the libraries embedded within an application
cannot be treated as a separate entity/process.

DAC allows the advertisement libraries to access the UID-protected
local persistent files that the host app generates and that is commonly
used to provide personalized services to their user, even when the user
is offline. The embedded advertisement libraries transmit this sensitive
personalized information about the user to the data brokers. For ex-
ample, My Ovulation calculator which provides women a platform to
track ovulation and plan pregnancy, advertisement libraries can parse
local files to learn whether its users suffer from headaches, whether
she is currently pregnant, and if so, the current trimester of her preg-
nancy. User inputs are also tracked by some aggressive advertisement
libraries to capture sensitive information like zip code, age, name, and
gender, this invasive attack is termed as user input eavesdropping [3].

5.0.3 In-app analysis

Dynamic analysis and Natural language processing are adopted to
expose vulnerabilities of the app from in-app access. Pluto uses
a monkey tool to simulates user interactions like a pseudo-random
stream of clicks, touches and system-level events, to trigger an
event-driven collection of data. The natural language processing is
used to find hidden patterns in well structure data that can provide
some cues of the presence of user profiling. For example, a software
engineer who follows best practices would name their variables used
for user profiling as user profile, uProfile, userProfile, up. Pluto
utilizes the Wordnet’s English schematic dictionary to derive sets of
synonyms for each point to provide better mining precision [3]. Since
Pluto emulates the functionalities of the advertisement library we will
use them interchangeably in the further sections.

Experimentation: The data analyzed by Pluto is categorized into
2 distinct types, L1 inspection (L1-I) that is used to test the in-app
attacks, L2 inspection (L2-I) that is used to test in-app attacks with
user input eavesdropping. The goal of the experiment is to first
determine the precision and recall of Pluto in determining user
attribute (gender) and interest (workout) for both L1 and L2 data
sets. Further, inspection is performed with Pluto’s MMiners scrapes
through the applications manifest to fetch permissions to allow L1
and L2 data sets to gain accessed to unauthorized user data [3].

Findings: From figure 2 we can distinctively see that an aggressive
advertisement library with user input eavesdropping improves the
accuracy of predicting user attributes and interests significantly. One
reason for this observation is, eavesdropping enables the libraries to
access layout files that contain information about user attributes and
user interests [3].

From Figure 3, the presence of MMiners allows Pluto to predict the
address of the user with 90%+ accuracy. By gaining access to the oth-
erwise locked resources like the application bundles 7 that contains
readily available personalized user-specific data, the advertisement li-
brary is able effortlessly read the user-specific information.

5.0.4 Out-app attacks

Out-app attacks are performed through the public APIs to collect a
list of installed applications and device information. The Android
operating system treats these APIs to be harmless and are left
unprotected, this implies that the advertisement libraries can readily
access these APIs. For example, the list of installed applications on

7App Bundle is a new upload format that includes all your app’s compiled
code and resources, but defers APK generation and signing to Google Play

Fig. 2. The result shows the precision and accuracy oh In-app attacks
without MMiners to determine the age of the user and if the user has a
correlation with the category workout [3].

Fig. 3. The results shows the precision and recall of determining the
address, and the capabilities of an aggressive ad library that utilizes the
MMiners to extract permissions from manifests [3].

the user’s mobile is sufficient to determine the user’s interest and
their smartphone usage. To illustrate the benefits reaped by these
harmless public APIs, the twitter app graph program asserted its plans
to profile users by collecting app bundles to provide a more personal
experience. Guardian newspaper reported that Twitter’s revenue in
the third quarter of 2014 alone was reported to be $320 million, with
85% of the revenue generated was from mobile advertisements [4].

To understand the severity of public API abuse, in a study performed in
[3], 2535 distinct apps were decompiled into smali code8 for analysis
and were looked up for invocation of getIP and getAP (discussed in
Section 3) in each app, 27.5% of the apps tested turned positive for the
invocation of these public APIs.

5.0.5 out-app analysis

Machine learning techniques on a corpus of app bundles are per-
formed to understand the exposure of smartphones to out-app attacks
through unprotected getIA and getIP public APIs. Pluto maintains
a co-installation pattern (CIP) data set, that contains the lists of
applications that are installed together, the data set is used by Pluto
to simulate the run-time environment that would be available to the
advertisement libraries.

Experimentation: Data collected by Pluto through public APIs are
analyzed in two stages. First, the co-installation pattern is used to
discover the association between two apps, i.e. if app A is present on
the mobile device then app B can be found on that device with x%
confidence, this technique is commonly referred to as association rule
and is commonly adopted in market basket analysis9. For example,
”Facebook messenger” is an application that can be treated as an
extension of ”Facebook” indicating the existence of high confidence.
If the user has installed only ”Facebook” on his mobile device, the
vendor can recommend ”Facebook messenger” application to the
user through targeted advertisements due to the existence of a higher

8The smali format is a human-readable representation of the application’s
bytecode

9Market Basket Analysis is one of the key techniques used by large retailers
to allows retailers to identify relationships between the items that people buy.

User Profiling in Smartphones from Applications – Swastik Satyanarayan Nayak and Siddharth Baskaran

36

degree of association between the two applications.

Second, supervised machine learning techniques that take CIP
estimated app bundles paired with a list of user-targeted data predict
whether an app bundle is indicative of a user’s attribute [3]. The
features of the collected data are not equally important, like a date of
birth field from the data has higher prominence in determining the
age of the user in regards to other features like marriage date. Also as
the number of features increases, it negatively impacts the accuracy
of predictions due to the curse of dimensionality 10. Pluto applies
statistical techniques to balance the distribution and dimensionality
reduction as a pre-process stage on the collected data before mining
for user attributes. Dimensionality reduction is applied on the data set
and the features of the data are weighted based on their significance
towards predicting the user attributes, for example, if Pluto was
configured to classify the individuals with allergy from a data set,
assuming a boolean field ”has allergy” exists in the captured data set,
this feature will ideally receive the maximum weights in comparison
to the other features [3]. KNN11, SVM12, and Random forest13

classification algorithms are adopted to predict the user attributes
from the CIP estimated app bundles.

Findings: Figure 4 shows the precision and recall of predicting the
user attributes age, marital status, and sex over different classifier al-
gorithms namely Random forest, SVM, and KNN. Random forest and
KNN perform better after dimensionality reduction, but the SVM per-
forms poorly. One possible reason is that SVM can handle higher
dimension data, the model complexity of the SVM is determined by
the number of support vectors instead of dimensions, reducing the di-
mensions crucial support vector data is lost [3].

Fig. 4. Out-app attack: the table shows the accuracy of different ma-
chine learning algorithms that were used to determine the original user
for a given anonymous test data [3].

6 USER PROFILING OF ANONYMOUS USER DATA

Anonymously shared user-data from different applications is analyzed
by leveraging machine learning techniques to re-identify the user. Ap-
plications installed by the user reveals the user’s interests, behaviors,
and habits. In a study performed in [1], any 4 applications installed
by the user are enough to re-identify the user with an accuracy of 95%
and just 2 applications are enough to achive an accuracy of 75%. An
advertisement company that has profiled a user for K installed appli-
cations, the company can identify the anonymous data that originated
from that user. A good machine learning experimentation is possible
only in the presence of unbiased and accurate sample data, to ensure
the quality of the sample data the unicity of applications and Markov
Chain Monte Carlo is adopted.

10htt ps : //en.wikipedia.org/wiki/Curse o f dimensionality
11https://en.wikipedia.org/wiki/K-nearest neighbors algorithm
12https://en.wikipedia.org/wiki/Support-vector machine
13https://en.wikipedia.org/wiki/Random forest

6.0.1 Unicity as a measure of re-identification
Let A denote the universe of all applications, where each application
is represented by a unique identifier in A. A data set D ⊆2A is the
ensemble of all apps. |D| denotes the number of individuals in D. Du
represents a non-empty subset of A for all apps of an individual u in
D. The set of K-apps over A is denoted as AK [1].

Let supp(x, D) denote the support of x ∈AK in data-set D, i.e., the
number of records in D which contains x. The unicity or uniqueness
of K-apps in D is denoted as, H1 =

|{x:x∈AK∧supp(x,D)=1}|
|{x:x∈AK∧supp(x,D)=1}| . It is the

relative frequency of K-apps which are contained by only a single
record. In generally, a relative abundance distribution (RAD) is
a relative frequency of histogram H = (H1,H2, ...,Hn) of K-apps
concerning a data-set D [1].

Unicity is the measure of re-identifiability and is used to measure
the privacy of the user. It is the probability that an adversary who
knows K applications installed on a user’s device, can single out
the record of the user in their database D. Calculation of unicity is
computation extensive and can be approximated with sampling using,
Ĥ1 =

|{x:x∈AK∧supp(x,D)=1}|
|V | , where V is the sample set, and |V | is the

sample size [1].

6.0.2 Uniform sampling K apps
A Sampling of K-apps for experimentation is performed by selecting
K-apps uniformly at random in data-set D. However this technique
provides a biased estimation of unicity H1, k-apps that occurs fre-
quently in more records of D become more likely to be selected which
makes the unicity measured biased towards popular k-apps [1]. Unbi-
ased sampling is achieved with the use of Markov Chain Monte Carlo
method, the proposed method is explained in-depth in [1] Section 3.2.

6.0.3 Experimentation and outcomes
The data-set of 37000 users is split into 70% training and 30% test-
ing data. The model used for training is an exponential model
describing an exponential decay of unicity, represented as f (X) =
a.exp(−b

√
x)+ c. Figure 5 shows the different exponential functions

used during experimentation and the accuracy of the model to identify
or predict the user. A significant gain of 75% is observed when K = 2
in comparison to K = 1 that has an accuracy of 53%. K = 4 yields
a satisfactory accuracy of 95%, K > 4 does not significantly improve
the accuracy of the model.

Fig. 5. Unicity generalization for different values of K, trained all with
maximum 37000 users. The learnt models (i.e., f(x)) are present in the
legend [1].

7 TECHNIQUES TO SAFEGUARD FROM USER PROFILING

The section will briefly describe two techniques application container-
ization and AdSplit techniques that can be adopted to counter user pro-

SC@RUG 2020 proceedings

37

filing. The techniques are built around the concept of restriction or
blocking data collection activities to secure the user’s privacy.

7.1 Application containerization

Fig. 6. Application containerization; (1) The nosy application is unable
to access the application encapsulated by the container by the means of
any public APIs; (2) The public APIs within the container will not expose
any other applications, since each container is an isolated environment
that only runs one application .

The application containerization technique spins up an on-demand iso-
lated environment aka container for an application to run. The APK
file of the application is only executed within the container during run-
time, each container app has a generic package name and obfuscated
app components. As a result, nosy apps14 cannot fingerprint a sensi-
tive app by using the information about its container app [2]. Figure
6 shows a pictorial representation of the application containerization
technique, the container manager is responsible for the orchestration
of containers and is the only entity that can be accessed externally.
Although this technique promises the privacy of the user from user
profiling, performance overhead is inevitable that is introduced during
container orchestration [2]. The advertisement libraries that are an in-
tegral part of the host application itself can still access the protected
APIs of that host applications, which makes this technique secure pub-
lic APIs better in comparison to the protected APIs.

7.2 AdSplit
AdSplit attempts to restore the privacy of the mobile devices from
advertisement libraries by running them as a separate application on
the device. This ensures that the host application and the advertise-
ment libraries are assigned with different UID’s, eliminating the need
for applications to request permissions on behalf of their advertising
libraries and thus restricting access of advertisement libraries to the
protected resources [7]. This technique requires design changes to the
mobile operating system as a provision should be made, as advertise-
ment libraries should be managed as a service provided by the OS
itself rather than an externally controlled process. The advertisement
libraries have access to public APIs, making this technique secure pro-
tected APIs better in comparison to the public APIs.

8 CONCLUSION

As with the rapid advancement of smartphone technology application
usage, installed application list, application metadata, application
installation behavior, and application interaction with linguistics user
inputs are prominent categories to which the user-data collected by
application can be classified into. The sensitive user information con-
veyed by the application is categorized into demographic attributes,
personal interest, personal traits, psychological status, and lifestyle.

Data brokers collect user sensitive data through public and protected
APIs. The installed application list is one of the most commonly

14Application that try to access information about other applications.

sought our data that can be obtained by accessing the public APIs. The
access protected data contained in the mobile devices are accessed
predominantly through the advertisement libraries. The privilege to
access these protected resources is gained through the exploitation
of the flawed permission assignment protocols adopted in mobile
devices.

Machine learning techniques have significantly boosted user profiling,
by allowing the data brokers to mine for user attributes that are
otherwise not apparent. Anonymous data which was generally
deemed garbage, can now be processed through machine learning
classifiers to re-identify original owner of the data.

Application containerization and AdSplit are two promising tech-
niques that work towards securing user privacy. The application
containerization skews towards securing the public APIs but allows
the advertisement libraries to access the protected resource of only
the host application, whereas AdSplit skews towards securing the
protected APIs while allowing some public API access.

The paper should give the reader a good understanding of user profil-
ing and the underlying techniques that are used to collect and profile
the users-data. For an in-depth understanding of the statistical exper-
imentation discussion in this paper, it is recommended that the reader
should refer to the referenced research papers.

9 FUTURE WORKS

Data collection techniques are not limited to the ones depicted in this
paper, other techniques should be explored. For example, some un-
ethical application can install backdoor, spyware, and trojan that can
give unauthorized access to user sensitive data. Application container-
ization secures mainly public APIs whereas the AdSplit secures the
protected APIs, a mixture of both techniques can be adopted that can
provide security from both in-app and out-app attacks.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. R. Smedinga, Prof. M. Biehl for
their valuable guidance, Fadi Hohson for the reviews and the authors
aforementioned in the references.

REFERENCES

[1] J. P. Achara, G. Acs, and C. Castelluccia. On the unicity of smartphone
applications. In Proceedings of the 14th ACM Workshop on Privacy in the
Electronic Society, pages 27–36, 2015.

[2] E. L. J. S. K. H. J.-P. H. Anh Pham, Italo Dacosta. Hidemyapp: Hiding the
presence of sensitive apps on android. 28th USENIX Security Symposium,
pages 711–728, 2019.

[3] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter. Free for
all! assessing user data exposure to advertising libraries on android. 2016.

[4] S. Dredge. Twitter scanning users’ other apps to help deliver ‘tailored
content’. The Guardian, November.

[5] N. Kiukkonen, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. To-
wards rich mobile phone datasets: Lausanne data collection campaign.
Proc. ICPS, Berlin, 68, 2010.

[6] V. Rivron, M. I. Khan, S. Charneau, and I. Chrisment. Exploring
smartphone application usage logs with declared sociological informa-
tion. In 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (SocialCom),
Sustainable Computing and Communications (SustainCom)(BDCloud-
SocialCom-SustainCom), pages 266–273. IEEE, 2016.

[7] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: Separating smartphone
advertising from applications. In Presented as part of the 21st {USENIX}
Security Symposium ({USENIX} Security 12), pages 553–567, 2012.

[8] D. M. Sumitkumar Kanoje, Sheetal Girase. User profiling trends, tech-
niques and applications. International Journal of Advance Foundation and
Research in Computer (IJAFRC), 2014.

[9] S. Zhao, S. Li, J. Ramos, Z. Luo, Z. Jiang, A. K. Dey, and G. Pan. User
profiling from their use of smartphone applications: A survey. Pervasive
and Mobile Computing, page 101052, 2019.

User Profiling in Smartphones from Applications – Swastik Satyanarayan Nayak and Siddharth Baskaran

38

Data Science Pipeline Containerization

Andrea De Lucia, Evi Xhelo

Abstract— In the last decade, data has become the most valuable resource for businesses worldwide because it can be used
to establish insights about their customers using data analysis algorithms. Data science is the field concerned with the retrieval,
processing, analysis and the interpretation of data, and most importantly, big data. Computer scientists are developing new means
to facilitate the process of handling big data. One such approach is by helping data scientists build their own Machine Learning
pipelines. Such pipelines require an ever growing set of tools and dependencies, creating what it is often called a “Dependency
hell”. This can be avoided using containers, such as Docker, that offer a lightweight approach to reusing and sharing libraries and
environments. Containers can also work in the cloud, which lifts the restrictions imposed by working on a singular machine. However,
in this scenario, it is important that the orchestration of containers is managed, which can lead to additional complexity. This paper
aims to depict how containerization can be incorporated into data science pipelines, how the orchestration is solved and why this is
relevant. We will show three different methods on how to establish pipeline containerization and depict a comparison between the
three. In the end we will evaluate the methods based on four criteria to help the reader to choose the most fitted platform for their
needs.

Index Terms—Containers, Kubernetes, Cloud computing, ML Workflow, Pipeline, Data Science, Kubeflow, Cloudflow, OpenWhisk

1 INTRODUCTION

Today there is an ever-growing quantity of data available as well as a
demand to extract insight from it in the shortest time possible. Data
scientists are able to identify relevant questions, collect pertinent data
from a multitude of data sources, organize the information, translate
results into solutions, and communicate the findings [14] in a way
which can create value to the end-users1. Data scientists create value
through data-driven analysis. The process of data-driven analysis is
composed of several steps that require data scientists to implement dif-
ferent algorithms which perform the specific operations for each and
every step [8], as shown in Figure 1.

Fig. 1. Steps in the data-driven approach, retrieved from [8]

A collection of these steps is called a pipeline, and it is often used in
Artificial Intelligence (AI), with its most common application being
an Machine Learning (ML) workflow. The input for an ML workflow
is raw data and the output is a machine learning model that can be
used for the analysis, argumentation and prediction of data trends.

As of 2012, about 2.5 exabytes of data are created each day,
with that number doubling every 40 months [1]. This tendency, also
known as big data, has established a need for scalable ML workflows
that can handle vast amounts of data and produce intelligible results.
However, arranging the scalability of an ML workflow using the
resources at hand can create new intricacies for data scientists.

• Andrea De Lucia is with RUG, E-mail: a.de.lucia@student.rug.nl.
• Evi Xhelo is with RUG, E-mail: e.xhelo@student.rug.nl.

1Consumers: people, companies and public administrations. Data scientists
create added value to serve consumers by finding their pattern and behaviour.

Moreover, having to re-run the pipelines multiple times update the
hyperparameters of the algorithms is also prone to causing overhead
challenges.

Another issue data scientists face is when the ML workflows
have to be transitioned from the development environment, in which
they were implemented, to the production environment, where they
can start creating value by providing predictions to other software
systems [20]. Given how ML workflows are subject to changes in the
code, model, and data, it can be hard to predict their behaviour [5].

One of the available means of tackling these issues is by mak-
ing use of containers and containerizing all the components of ML
pipeline. Containerization guarantees that no unexpected behaviour
will occur when the ML pipeline is transitioned into the production
environment because every step of the pipeline runs in an environment
(container) optimized for its purposes. We present a brief list of the
added benefits of containerizing an application in Figure 2 [10].

Fig. 2. Advantages of using containers for development, retrieved
from [10].

For managing running containers, orchestration platforms are used.
These platforms have the purpose of eliminating many of the manual
processes involved in deploying and scaling containerized applica-
tions. However, the tools that we will be discussing in this paper can
be used by data scientists to establish their ML workflows without
having to define the containers and their orchestration manually.
These tools allow data scientists to focus solely on the implementation
of machine learning algorithms.

Therefore, in this paper, we will present three different methods
that can be used to establish the containerization of pipelines. Firstly,
we will introduce some useful background information in Section 2
followed by a presentation on each one of the three tools in Section
3. Finally, we will define some objective criteria in Section 4,
concluding with the final evaluation in Section 5 and then in Section

39

6 our conclusion.

2 BACKGROUND

As paramount as the development of algorithms is to a data scientist,
tuning their parameters, running them on the production environment
and being able to showcase the results, is also important. Currently,
an increasing number of software engineers (and data scientists) are
migrating their work on the cloud, since it ensures more resources.
Several intricacies can arise when trying to deploy a finished ML
workflow to the cloud, which can prompt new challenges that need
to be arranged such as uploading the data, taking care of the access
and security, balancing just enough resources for the current job. The
platforms that will be discussed in this paper aim to alleviate these
challenges by handling the low-level tasks of containerizing the ML
applications and orchestrating the containers. We will firstly introduce
the concepts that have made them possible, from containers, all the
way to their orchestrating tools.

2.1 Containers
A container is a standard unit of software that packages up code
and all its dependencies so that the application can run quickly,
and reliably, regardless of the computing environment [7]. Multiple
containers can run on the same machine and share the OS kernel with
other containers, each running as isolated processes in the userspace.
Containers take up less space than Virtual Machines (VMs) since
container images typically use tens of MBs in size as opposed to VMs
which can consume up to several GBs in size. A general comparison
between the two different software can be noted in Figure 3.

Containers have become a relevant tool in the world of com-
puting because they ensure compatibility across platforms. It is
guaranteed that a containerized application will run in the deployment
environments the same way as it would run in the development envi-
ronment [3]. Containers can be used to establish microservices [11].
Essentially, every service is a (containerized) component which can
be deployed, scaled, and tested independently from the other services,
while also being interconnected to the other components [17]. Docker
is one of the most widely-used containerization software in the
industry [19].

Fig. 3. Comparison between how containerized application (Docker ex-
ample) and a VM, retrieved from [7].

2.2 Container orchestration
The containerization of applications often results in a microservice
based architecture where the components are split across many
containers. The next step would be to run them in a production
environment and to manage their life-cycle by using an orchestration
platform [16]. Kubernetes is the most popular container orchestration
platform and was created by Google to work in any environment
of the developer’s choice [21]. We will use Kubernets as reference
throughout the remainder of the paper.

Kubernetes is used for automating the deployment, manage-
ment and scaling of a containerized application [19]. An overview
of its complex architecture can is depicted in Figure 4. The building
block of Kubernetes consists of three components: a pod, which

is comprised of one or more Docker containers, a node, which
runs and schedules the pods and a cluster, which is a collection of
nodes. Kubernetes uses clusters to manage an application that will be
deployed into production mode [19].

Fig. 4. Architecture model for Kubernetes, retrieved from [16]

2.3 ML-Workflow
An ML workflow defines the necessary steps that data scientists
normally take when they are building prediction (or data) models.
A prediction model is an algorithm that is used to understand the
retrieved data and to possibly generate predictions about the future.
The basic workflow for an ML project consists of several steps,
including (but not limited to): problem formulation, data collection,
data processing, data analysis, model construction, model validation
and deployment [22][8].

Each one of the workflow steps requires special collections of
packages, dependencies, frameworks or environment variables to run
on. Deploying all the steps can impose cross-platform challenges and
dependency issues which will result in new, time-consuming tasks
for data scientists. Containerisation can alleviate these challenges by
deploying each step as a microservice that will perform its specific
goal consistently, in any platform that is deployed [3].

2.4 Portable and scalable ML pipelines
Containerizing an ML workflow and orchestrating the application
using Kubernetes solves the portability issues that data scientists have
to face when running their applications in a production environment.
However, the constant increase on demands for ML workflows and
big data processing workloads poses scalability requirements on the
orchestration of their respective running applications.

Several platforms have been developed that give data scientists
the opportunity to operate on Kubernetes-orchestrated applications
without having to handle low-level operations on Kubernetes. More
specifically, these platforms offer pipelines that will mimic the
behaviour of an ML workflow by implementing the steps that data
scientists have to establish themselves. In the following section, we
will discuss three of such platforms, their features and how they can
be used to establish ML pipelines.

3 ANALYSIS

In this section we will introduce some of the most promising projects
for the containerization of pipelines. More specifically, we will focus
on three platforms: Kubeflow, Cloudflow and OpenWhisk, and discuss
how they can be used to implement the pipelines. The criteria for the
selection were:

(i) open-source software

(ii) compatibility with containers

(iii) compatibility with Kubernetes

Data Science Pipeline Containerization – Andrea De Lucia and Evi Xhelo

40

Fig. 5. Overview of Kubeflow components, retrieved from [2]
.

Although there are several alternative platforms that offer similar
functionalities to the chosen Kubeflow and Cloudflow - Jenkins
Pipeline [18], MLflow [6] or Cubonacci [4] which allows users to cre-
ate their own pipelines within their system - these are built to work
directly with containers and offer less complexity. The third chosen
platform, OpenWhisk, offers an overview of the serverless architec-
ture, as opposed the commonly seen containerization -where entire
application or huge chunks of it are being hosted in a single container-
and was created by Apache Software Foundation, a well-known name
in the computing industry.

3.1 Kubeflow
Kubeflow is a platform built on top of Kubernetes and created by
Google which can be used for developing and deploying an ML sys-
tem. By providing a platform that creates ML workflows, Kubeflow
‘skips’ over the initial containerization steps, leaving data scientists
with the sole task of programming their algorithms. Therefore, the
purpose of using Kubeflow is to ensure that the scaling and deploy-
ment of ML models be as simple as possible by letting Kubernetes
handle low-level tasks which include: (i) providing easy, repeatable,
portable deployments on a diverse infrastructure (from the develop-
ment environment to the production one) (ii) deploying and managing
loosely-coupled microservices and (iii) scaling based on demand

Components of Kubeflow Kubeflow offers its services by mak-
ing use of several components, which are software packages that pro-
vide specific functionalities. An overview of them can be seen in the
Figure 5. We briefly introduce the key components in this section.

(a) CENTRAL DASHBOARD The central dashboard provides quick ac-
cess to the components that are being used for the deployment.

(b) JUPYTER NOTEBOOKS Any Kubeflow deployment offers support
for creating and managing Jupyter Notebooks.

(c) FRAMEWORKS FOR TRAINING Kubeflow offers five different
frameworks that can be used for training ML models (Chainer
Training, MPI Training, MXNet Training, PyTorch Training and
TensorFlow Training).

(d) HYPERPARAMETER TUNING Hyperparameters are fixed parame-
ters (they are not learned, so they do not change with training)
which express important properties of the model. They are set to
a given model before its regular training process is initiated. The
system that Kubeflow uses for this purpose is Katib.

(e) PIPELINES This component is a platform that can be used specif-
ically for the deployment of ML workflows. The goals of this
component are threefold because it ensures orchestration of the
pipelines, the possibility to experiment indefinitely and reusabil-
ity of components.

(f) TOOLS FOR SERVING After an ML model has been trained, it
should be made available to serve prediction requests. This com-
ponent of Kubeflow handles the task of serving the ML mod-
els. Some of the available tools are KFServing, Seldon Serving,
NVIDIA TensorRT Inference Server and TensorFlow Serving.

(g) MULTI-TENANCY IN KUBEFLOW The goal of this component is
to ensure that KubeFlow supports multi-user isolation. Differ-
ent users have the opportunity to isolate and protect their own
resources when they have to share the same pool of resources
across different teams and users.

Kubeflow pipelines Kubeflow pipelines are ready-for-use
ML workflows that include all the components that data scientists
would have to construct separately by themselves, such as data
preprocessing, model training and more. Pipelines are built from
self-contained sets of code called pipeline components. A Kubeflow
pipeline consists of a set of input parameters and a set of tasks. A
task is an instance of a pipeline component which performs a step in
the pipeline’s workflow. The input parameters of the pipeline can be
modified to (a) experiment with different sets of hyperparameters or
(b) reuse a pipeline’s workflow to train a new model.

Data scientists can either define their own pipeline components

SC@RUG 2020 proceedings

41

or alternatively, use the ones that are available on the AI Hub2.
Pipeline components are composed of a set of input parameters, a set
of outputs and the location of a container image. The container image
includes the said component’s executable code and a definition of the
environment that the code runs in [9]. The input of a component can
(a) depend on the input of the pipeline itself or (b) on the output of
other components within the pipeline. The dependencies established
between the pipeline components are used by Kubeflow Pipelines
SDK to define the workflow of the pipeline as a graph.

When a pipeline is running, the system launches one or more
Kubernetes pods, which correspond to the steps of the ML workflow.
The pods start Docker containers, and the containers, in turn, start
the programs. After users have established the pipelines according to
their preferences, they can be uploaded using Kubeflow Pipelines UI
or the Kubeflow Pipelines SDK.

3.2 Cloudflow

Cloudflow is an open source project to help develop, orchestrate,
and operate distributed streaming applications on Kubernetes
[12]. As shown in Figure 6, Cloudflow allows users to easily
break down their streaming application into smaller composable
components and wire them together with schema-based contracts.
It is produced by Lightbend, the same company behind Akka and Play.

Cloudflow introduces the concepts of stream and blueprint.
The former means that each component is a stream that can take data
as input or produce it as output. This allows the user to focus on
the business logic and have the system take care of the underlying
deployment. Lightbend recommends using the OODA loop (Observe,
Orient, Decide, Act) [13] for the infrastructure, because the GUI that
comes with the system makes it relatively simple to monitor, alter,
and/or analyse the application.

This platform is recommended for users that are already famil-
iar with the Akka software since it also provides integration to Kafka,
Spark, Flink and other run-time implementations for Streamlets.
The Streamlets API allows the user to manage, scale and configure
streaming applications at run-time. The GUI of the software provides
insight into the user and server side, allows to link the Streamlets
directly and to set their properties for scaling (although the GUI is
available with a Lightbend subscription).

Fig. 6. Cloudflow model, retrieved from [12]

Cloudflow follows the ‘let it crash’ principle and can recover from
most failure scenarios, except those that are deemed catastrophic,
where the data used for recovery (snapshots) may have been lost. This
approach also follows the general policy of Kubernetes, where pro-
cesses are ephemeral and can be restarted, replaced, or scaled up/down
at any time [12]. In case of failure there are some guarantees:

(i) At-most-once Data may have been processed but will never be
processed twice.
You may lose data, but your system will never process the same
data twice.

2AI Hub is a platform created by Google where users have access to AI-
related content including models, algorithms, research papers, components, ect.

(ii) At-least-once Data that has been processed may be replayed and
processed again.
You may process data more than once, but each data will be pro-
cessed at least once.

(iii) At-Exactly-once Data is processed once and only once.
This is the most sought after option but is next to impossible to
achieve in distributed systems. It means that data will be pro-
cessed once only in spite of any failure.

(iv) Effectively-Exactly-Once This means that producing the same
record more than once is the same as producing it only once.
Your system will process all the data and in case of processing
more than one, it will make no difference

3.3 OpenWhisk
Apache OpenWhisk is an open-source, distributed serverless platform
that executes functions in response to events at any scale [15]. As
seen in Figure 7, in response to the events that OpenWhisk receives
as input, it is possible to define triggers that, based on user-defined
rules, will execute actions. Actions can be defined in the most widely
used programming languages. It is also possible for users to create
their low-level code to define them. The system will save a JSON file
concerning the result of the action, which can be retrieved later.

Fig. 7. OpenWhisk programming model, retrieved from [15]

As noted in Figure 8, OpenWhisk offers a multi-tier architec-
ture, where the input is received from a front-end RESTful API which
is completely HTTP based [15].

Fig. 8. OpenWhisk architecture, retrieved from [15]

We present a list of the main components of the OpenWhisk
architecture.

(a) The NGNIX server translates the request towards the controller,
providing the user’s info.

(b) The controller is responsible for checking the user permission
and afterwards translating the request in a real invocation of the
action required.

(c) The DB contains both the user and object permissions, which
means, for example, who can invoke what, but also how much
hardware can be used for a task. This is the part where the code
of all available actions is stored.

Data Science Pipeline Containerization – Andrea De Lucia and Evi Xhelo

42

(d) The controller, knowing the status of all the executioners, acts as
a load-balancer.

(e) To guarantee the delivery of the message in case of errors or
under stress, OpenWhisk uses Kafka to deliver the message from
the controller to the executioners called Invoker.

(f) The Invoker, which is the heart of the system, then executes the
action inside a docker container.

4 HEURISTICS

In this section we will show how the selected platforms differ from
one another, from their goals all the way to how they manage their
container orchestration. Therefore, we have come up with four com-
parison criterions.

4.1 Platform goals
As listed in Section 3, the platforms we have chosen are quite different
from one another. This can be further explained from their different
goals.

(i) Kubeflow: The goal is to simplify the creation, deployment and
re-usability of ML workflows on different environments by mak-
ing use of Kubernetes.

(ii) Cloudflow: The goal is to ease the development, orchestration,
and operation of distributed streaming applications on Kuber-
netes.

(iii) OpenWhisk: The goal is to provide an open-source, distributed,
serverless platform that executes functions (f (x)) using multi-
ple deployment options: Kubernetes and OpenShift, Mesos and
Compose. The endorsed option is Kubernetes.

4.2 Orchestration
To achieve the aforementioned goals, each platform makes use of Ku-
bernetes as its container orchestration in different ways:

(i) Kubeflow abstracts away from the orchestration details. The
user is only required to define the pipeline components and their
dependencies, creating what is called a pipeline specification.
The specification is compiled in the Pipelines SDK and is then
uploaded via the Kubeflow Pipelines UI. The user will then be
able to view the pipeline graph generated from the specification
and can schedule experimental runs based on the pipeline.

(ii) Cloudflow takes care of the links between various containers us-
ing a Blueprint. This Blueprint contains all the Streamlets and
how they are connected. Cloudflow will then deploy each one of
them and then connect them with the related input/output links.
Blueprint is simpler than a full YAML file.

(iii) OpenWhisk does not only provide an easier orchestration, but
also a different approach. After you deploy your actions, trig-
gers and rules, OpenWhisk deploys them on Kubernetes using
Helm (or its alternatives) and takes care of load-balancing, ac-
cess managing and scaling (up/down) because the actions will
be deployed only when needed.

4.3 Criteria
In this section we list a series of criteria that will be used to evaluate
the different approach to containerization. The criteria are:

(a) Complexity: Is the system easy to use? Does the system come
with overhead or savings for developments?

(b) Clarity: Is the application created with the system easy to under-
stand, debug and reproduce?

(c) Implementation: Does the system make the development easier?

(d) Scope: What is the range of applications of the system? Can it
be used with multiple programming languages/services?

5 EVALUATION AND DISCUSSION

In this section we will present the evaluation of each platform against
the criteria explained before in Section 4.

5.1 Kubeflow
Kubeflow is a platform created by Google with the intention of
automating the deployment and portability of machine learning
pipelines. Kubeflow allows users to focus on the development of the
algorithms which will be automatically ready for production mode.

(a) Complexity: Kubeflow has a learning curve, especially for users
that are not entirely familiar with the concepts of containerization
and container orchestration. The documentation online can help
improve the initial workflow of the users.

(b) Clarity: Kubeflow is a very recent platform and various of its
components are still in beta version. However, the software is
extensively documented and provides example applications for
new users. It should not take more than one week work to get
fully accustomed to the functionalities of the current version of
Kubeflow.

(c) Implementation: Kubeflow abstracts away from the low-level
tasks of containerizing every step of the pipeline and manag-
ing their orchestration via Kubernetes. Instead, users are only
expected to implement their machine-learning algorithms.

(d) Scope: The scope of Kubeflow lies mainly within the AI and
Data Science community because the pipeline steps are repre-
sentative of an ML workflow.

5.2 Cloudflow
Cloudflow is closely-related to Akka. Therefore, users that are already
familiar with that software, should have a relatively easy working ex-
perience with Cloudflow as well.

(a) Complexity: Cloudflow is simple to use for users that have the
subscription which offers a GUI, without the difficulty to scale
up but it is still manageable.

(b) Clarity: Once setup, Cloudflow is relatively easy to maintain and
understand. Everything is saved inside the blueprints and the
actions.

(c) Implementation: Users that have working experience with the
Akka or Lightbend technology will find it very easy to start
working with Cloudflow.

(d) Scope: The range of application is quite narrow. It made of
mostly for Lightbend software and some other popular software
such as Kafka,Spark, Flink.

5.3 OpenWhisk
OpenWhisk uses the serverless approach, therefore, allows for the cre-
ation of functions to respond to whatever the user needs. It is event-
based and has a set of rules to link which action should start after a
trigger. This kind of approach is the most promising one for reducing
the cost of working in the cloud because there are neither orchestra-
tors, nor containers constantly running.

(a) Complexity: OpenWhisk offers a simple but newer approach.
The user defines a function that will be executed on the cloud
after certain triggers and rules. This paradigm, being new, has a
non-trivial learning curve.

(b) Clarity: Once the system is built it can be rather simple to under-
stand and work with.

(c) Implementation: It is relatively easy to implement OpenWhisk
because it offers compatibility with a lot of software. The users
are only required to define the actions, the triggers and the rules
that fire the former.

SC@RUG 2020 proceedings

43

(d) Scope: OpenWhisk has a really wide range of applications and
it is compatible with: .Net, Go, Java, JavaScript, PHP, Python,
Ruby, Swift. The community has also released the engine that
lets Ballerina and Rust work with OpenWhisk.

5.4 Discussion
From the previous sections, we discovered the advantages of the three
possible solutions, Kubeflow, Cloudflow and OpenWhisk. These three
are the biggest projects in the direction of pipeline containerization,
but this is not a comprehensive list. Furthermore, there is no definitive
‘best‘ software, but only software that best fits to the user’s needs. The
most promising approach for cost reducing is the serverless one, but it
is very new, and it has yet to be explored. In Table 5.4 we summarize
the best systems for each criterion.

(a) Complexity: We have Cloudflow and OpenWhisk. The former is
for the users already familiar with Akka, it’s so for them is pretty
easy. The latter instead is a simple but powerful approach, so
both are considered the best for this criterion.

(b) Clarity: All of them are very clear, especially Cloudflow and
Kubeflow are very tailored for their userbase.

(c) Implementation: The best for data scientist is Kubeflow not that
the other two are bad, just that Kubeflow does not require deep
knowledge of containerization and is tailored for them.

(d) Scope: the winner is OpenWhisk. It offers a wide range of appli-
cation and it is compatible with a lot of programming languages.

Kubeflow Cloudflow OpenWhisk
Complexity x x
Clarity x x
Implementation x
Scope x

Table 1. Table with the best system per category.

6 CONCLUSION

As described previously in Section 5, there is no absolute ‘winner’
since users have to decide on which platform fits their requirements
best. On paper, it appears that Cloudflow is the most suitable option
for the Akka users, especially those that are equipped the with
Lightbend subscription. Although the GUI is not available in the
open-source project that we analysed, the concept is, nonetheless,
good.

OpenWhisk is the platform that offers the biggest compatibility
and scope, but it is a new project and it is hard to evaluate how well
will it perform. There are not a lot of publications available about
the serverless principle, however, from the first tests that have been
published, it appears that it can reduce the costs substantially.

Kubeflow is specifically dedicated towards machine learning
models, and therefore, it is very specialised. This makes it the best
option for data scientists that wish to implement and reuse their own
ML workflows.

6.1 Future work
As future work it would be interesting to lead a study about a user
group that implements the same project over the different platforms.
In this way we can compare our evaluation with real data and depend-
ing on their preferred criteria, also re-evaluate the platforms. Another
direction for this topic would be to extend the research with more plat-
forms and more objective criteria, providing even more detailed sug-
gestions for the best platforms.

ACKNOWLEDGEMENTS

The authors wish to thank dr. F.J. (Frank) Blaauw for his support.

REFERENCES

[1] E. B. Andrew McAfee. Big data: The management revolution. Harvard
Business Review, 2012.

[2] M. Brys. Kubeflow — a machine learning toolkit for kubernetes, 2019.
[3] J. Cook. Docker for Data Science: Building Scalable and Extensible

Data Infrastructure Around the Jupyter Notebook Server. Apress, USA,
1st edition, 2017.

[4] Cubonacci. Machine learning lifecycle management. https://www.
cubonacci.com/platform-overview.

[5] C. W. Danilo Sato, Arif Wider. Continuous delivery for machine learning,
2019.

[6] I. Databricks. An open source platform for the machine learning lifecycle.
https://mlflow.org/.

[7] Docker. What is a container? a standardized unit of software. https:
//www.docker.com/resources/what-container.

[8] E. Garcı́a del Valle, G. Lagunes Garcı́a, L. Prieto Santamarı́a, M. Zanin,
E. Menasalvas, and A. González. Disease networks and their contribution
to disease understanding and drug repurposing. a survey of the state of the
art, 09 2018.

[9] Google. Understanding kubeflow pipelines and components. https://
cloud.google.com/ai-hub/docs/kubeflow-pipeline,
2020.

[10] Kumina. Top 7 benefits of using contain-
ers. https://blog.kumina.nl/2017/04/
the-benefits-of-containers-and-container-technology/.

[11] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert. Microser-
vices. IEEE Software, 2018.

[12] Lightbend. Cloudflow. https://cloudflow.io/docs/
current/index.html, 2016.

[13] Lightbend. ”how to build streaming data pipelines with akka streams,
flink, and spark using cloudflow”. https://www.youtube.com/
watch?v=MaXCx0fy0xU, 2019.

[14] U. B. S. of Information. What is data science?
https://datascience.berkeley.edu/about/
what-is-data-science/.

[15] A. OpenWhisk. Apache openwhisk. https://openwhisk.
apache.org/, 2016.

[16] C. Orchestration, S. Buchanan, J. Rangama, and N. Bellavance. Intro-
ducing Azure Kubernetes Service. Springer, 2019.

[17] C. Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2015.

[18] J. project. Jenkins pipeline and docker. https://jenkins.io/
doc/book/pipeline/docker/.

[19] P. Riti. Pro DevOps with Google Cloud Platform: With Docker, Jenkins,
and Kubernetes. Springer, 2018.

[20] C. Samiullah. How to deploy machine learning models, a guide, 2019.
[21] S. J. Vaughan-Nichols. Kubernetes leads container or-

chestration. https://www.zdnet.com/article/
kubernetes-leads-container-orchestration/, 2018.

[22] M. Wang, Y. Cui, G. Wang, S. Xiao, and J. Jiang. Machine learning for
networking: Workflow, advances and opportunities. IEEE Network, 09
2017.

Data Science Pipeline Containerization – Andrea De Lucia and Evi Xhelo

44

Continuous Security Testing: A Case Study on the Challenges of
Integrating Dynamic Security Testing Tools in CI/CD

Remco v. Buijtenen and Thorsten Rangnau

Abstract—Continuous Integration (CI) and Continuous Delivery (CD) have become a well known practice in DevOps to ensure fast de-
livery of new features. This is achieved by automatically testing and releasing new software versions multiple times per day[18]. How-
ever, classical security management techniques cannot keep up with this quick Software Development Life Cycle (SDLC). Nonethe-
less, guaranteeing high security quality of software systems has become increasingly important [7]. The new trend of DevSecOps
aims to integrate security techniques into existing DevOps practices. Especially, the automation of security testing is an important
field. Although plenty of literature discusses security testing and CI/CD practices, only few deal with both topics together. Additionally,
those studies cover only static code analysis but miss to address dynamic testing methods. We integrate three automated testing
techniques into a CI/CD pipeline and describe the challenges and pitfalls we encounter. This will support DevOps teams that want to
integrate dynamic security testing into their CI/CD pipelines.

Index Terms—DevSecOps, Dynamic Security Web Testing, Continuous Security, Continuous Integration

1 Introduction

In the past decade, a great shift occurred in software development from
creating Software as a Product (SAAP), that is executed as a single in-
stance on customers’ machines, towards providing Software as a Ser-
vice (SaaS) where many users share instances that run on cloud infras-
tructure [14]. This enabled software practitioners with the ability to
continuously improve their product quality by providing frequent up-
dates [15]. In order to manage these improvements efficiently, clas-
sical development (Dev) and operation (Ops) tasks were combined
which resulted in a development concept termed DevOps [6, 15]. This
concept is based on collaboration between the two former fields in all
development stages and achieved by solving problems together, au-
tomating processes, and agree on mutual metrics to use when eval-
uating a system. This created the four pillars that guide teamwork
in DevOps: culture, automation, measurement and sharing (CAMS)
[17, 9]. This agile development method enables software practitioners
to test and deploy software versions in a much more frequent pace and
hence respond to customers’ demands rapidly. A prime example of
this is Amazon, where a new version was released more than once per
second [18].

While fast releases are considered to be beneficial to the quality of
a product, they may also increase pressure on developers to finish their
tasks more quickly. Studies such as Kraemer [10] revealed that tight
schedules or high work load can lead to the accidental introduction
of security vulnerabilities into software systems. Kraemer also states
that the reason for the presence of vulnerabilities is a lack of security
knowledge in DevOps teams. This affects the quality of security tests
and hence diminishes the security of a system. In addition to this,
cybercrime is increasing in recent years. For instance, the number of
stolen or compromised records has increased by 133% from 2017 to
2018 [16]. Furthermore, security and privacy regulations such as the
General Data Protection Regulation (GDPR) have been implemented
in the EU in order to enforce security standards and punish companies
harshly if these regulations are violated (e.g. [5]). All of these aspects
show that the security concerns have become increasingly important.

This increased focus on security introduced a new field called De-
vSecOps, which attempts to integrate security (Sec) practices into De-

• Remco v. Buijtenen is a Computing Science student at the University of
Groningen, E-mail: r.m.van.buijtenen@student.rug.nl.

• Thorsten Rangnau is a Computing Science student at the University of
Groningen, E-mail: t.rangnau@student.rug.nl.

vOps [15]. Traditionally, security experts were organized into separate
silos and security concerns were addressed after the actual design and
development stages [16]. Similar to the inception of DevOps, DevSec-
Ops attempts to promote collaboration between development, opera-
tions and security teams. DevSecOps establishes a proactive approach
to limit the attack surface of the application [18] and entails consid-
ering security from the very beginning of the project [15]. However,
the integration of security practices into modern software engineer-
ing creates several problems. Firstly, traditional security methods are
not applicable because they cannot keep up with the agility and speed
of DevOps. Secondly, very little is known about DevSecOps so far, as
only few studies were conducted on this topic [15]. Especially the lack
of knowledge of when and where to use (existing) tools in automation
is a considerable problem that prevents software practitioners from in-
tegrating security into their DevOps activities such as continuous inte-
gration and continuous deployment (CI/CD) [16].

Until now, research has identified the principles, priorities and prac-
tices in DevSecOps. It appears that the automation principle is equally
significant in DevSecOps as it is in DevOps. One key practice is con-
tinuous testing of security. This enables security teams to keep up
with DevOps and establishes fast, scalable and effective security tests
[15]. However, most literature focuses on automatic security testing
through static scans of source code (e.g. [11]). Although important,
static tests cannot detect all security vulnerabilities in a system. In
fact, static analysis is only able to find those vulnerabilities that can
be derived directly from source code. These vulnerabilities are only a
small subset of the ten most common vulnerabilities in web applica-
tions [1], such as Components with Known Vulnerabilities. Dynamic
security testing on the other hand, where a system is attacked in a sim-
ilar way as actual hackers would, is able to cover a much broader range
of vulnerabilities. Literature such as [7, 8] describes how to execute
these dynamic tests in a consistent, reproducible way. However, little
is known about how to integrate this into the CI/CD pipelines com-
monly used in DevOps.

With this paper we aim to answer the question: What problems
can one encounter when integrating existing security testing tools into
CI/CD in order to bridge the gap between dynamic security testing
tools and CI/CD pipelines. With this, we aim to provide insights that
help to properly integrate security into the automated testing part of the
Software Development Life Cycle (SDLC). We conduct a case study
where we apply three different testing techniques in CI/CD. This will
enable us to identify pitfalls, challenges and shortcomings DevOps
teams may encounter while automating security tests. We perform
Web Application Security Scanning (WAST) using Zed Attack Proxy

45

(ZAP)1 in Section 4, Security API Scanning (SAS) with JMeter 2 in
Section 4, and Behaviour Driven Security Testing (BDST) using Sele-
niumBase automation framework [3] in Section 4.

The remainder of this paper is structured as follows: Section 2
provides an overview on automated security testing techniques. An
overview of automated testing in CI/CD is provided in Section 3. The
setup of the case studies is described in Section 4, whereas Section
5 depicts our results, and in Section 6 we discuss our findings. We
conclude in Section 7 and provide an overview of future work.

2 Dynamic Application Security Testing

Every software expert agrees that a software system needs to be tested
before it is released. It is therefore recommended to test web or cloud
applications for security flaws at the service, infrastructure, and plat-
form level [19]. As this study focuses only on testing the service layer,
those testing methods are explained in more detail. Security assess-
ments of this layer can be divided into static and dynamic security
testing [7]. Static testing or whitebox testing, describes inspection of
the source code in order to find security flaws within the code such as
using a libraries that are known to be vulnerable. In contrast to this,
dynamic application security testing (DAST), focuses on testing a run-
ning application by testing how it response to malicious requests. This
is also considered as blackbox testing because the perspective of the
tests is the same as a user or hacker has on the production system and
mainly focuses on scanning ports or services of the running applica-
tion. In general, every attack scenario of DAST consists of a request
that is sent to the system [8]. This request may contain input data that
has to be processed by the application. The application answers with a
response after processing the request. The challenge in security testing
is to send the correct (attack) requests and to identify the information
within the response that indicates the presence of a vulnerability.

2.1 DAST Techniques

In order to test security in CI/CD pipelines, those tests need to be au-
tomated and repeatable with consistent results. Therefore, this sec-
tion discusses three DAST techniques that can be automated. Those
are: Web Application Security Testing (WAST), Security API Scan-
ning (SAS), and Behaviour Driven Security Testing (BDST)[8].

Web Application Security Testing (WAST)

This testing technique is an automated web security test that attacks a
web application through its user interface [8]. It includes three steps
performed by the WAST component: passive scan, active scan, and
result reporting. The passive or spider scan explores the whole ap-
plication in order to determine all URLs and resources available. The
active scan performs then malicious requests against every resource. It
also evaluates every response of the application in order to determine
possible security issues on the targeted URL. After the active scan has
been completed, the results are aggregated into a report. Usually, the
scope of the scans and the attack scenarios can be configured. In ad-
dition, the security issues can be categorized into different risk levels.
Figure 1 illustrates the WAST technique.

Fig. 1. Overview of WAST security testing technique: The passive scan
determines all available components and the active scan attacks them.

1https://www.zaproxy.org/
2https://jmeter.apache.org

Security API Scanning (SAS)

The most important DAST technique is Security API Scanning (SAS).
The WAST technique scans the entire web application but may not
detect flaws of the underlying web service [8]. Therefore it is highly
recommended to test the web service through its APIs with SAS. This
technique allows testing of every endpoint in great detail and can cover
multiple security relevant use cases such as authentication, input val-
idation, or error handling. In SAS a parameterized request is sent to
the API of the web service that is under attack. This input data can
vary from adding credentials for authentication to malicious payloads
such as SQL injection (SQLi). The request is made by a request com-
ponent. It sends the request through a proxy component that intercepts
traffic between the request component and target application. This
proxy component evaluates all the intercepted traffic for any security
issues. After the test is performed, the proxy component reports the
result of the evaluation. SAS testing is especially useful when gen-
erated fuzz data is used as input. Fuzz data can be a list of the most
common passwords, a bulk of random data in order trigger unexpected
behavior of the system, or malicious input for SQLi. Figure 2 provides
an overview of the SAS testing technique.

Fig. 2. Overview of SAS testing technique: Request component sends
request through proxy component to target application. Proxy compo-
nent evaluates traffic and generates report.

Behaviour Driven Security Testing (BDST)

Behaviour Driven Development(BDD) is an extension of Test Driven
Development (TDD) and follows the idea of integrating business in-
sights into testing [12]. BDD uses a natural languages approach in
order to define behaviour and expected outcome of test cases. Be-
haviour Driven Security Testing (BDST) applies the idea of BDD to
the domain of security testing for the added benefit that non-security
experts can understand the security tests, further improving the collab-
oration between security experts and DevOps teams [7]. Additionally,
BDST provides a dynamic security documentation of the whole soft-
ware system due to the GWT (Given, When, Then) format of the test
specifications. In UI tesing, BDD frameworks are used to automate
standard UI tests that mimic the user behavior [12]. This approach
can be used to automate the execution of attack scenario’s from the
hacker’s perspective. Because this technique is executed against the
system as a whole, this enables the identification of vulnerabilities that
target multiple entrypoints to the system. BDST combines several se-
curity testing techniques such as SAS or WAST in order to mimic
attack scenarios by a hacker, as well as to find security issues during
normal system usage [8]. An example of a BDST setup is shown in
Figure 3.

Fig. 3. Overview of BDST testing technique: The BDST framework
sends behavior driven requests to the target application through the
proxy component which then scans for security flaws.

Continuous Security Testing: A Case Study on the Challenges of . . . – Remco v. Buijtenen and Thorsten Rangnau

46

2.2 Automation of DAST
As was mentioned in Section 2.1, security testing techniques must be
automated before they can be integrated into a CI/CD pipeline. This
section describes a number of tools that can be automated and ex-
ecuted in CI/CD. We will define requirements for selecting security
testing tools that can be integrated into CI/CD. Each tool must have,
as a minimum, a command line interface (CLI) that can be used to con-
trol testing activities such as triggering attacks or to configure testing
components. More beneficial are tools that can be directly addressed
through code via an API using HTTP requests or client libraries. User
Interfaces (UIs) are not required except for creating test cases during
development.

Automation of WAST

In order to automate WAST, the OWASP ZAP web security scanner can
be used. It is a versatile open source tool that can be configured for
multiple types of security tests. ZAP is a standalone application that is
accessible via GUI, CLI, REST API and various client libraries. ZAP
comes with pre-installed known attack scenario’s that it will perform
during its active scan. This is complemented by a spider scan that
will attempt to automatically discover entrypoints in a web application
that these attacks can be performed against. The result is a high level
of automation with little configuration. However, these basic scans
are rather limited because customized HTTP POST requests are not
supported by ZAP in this configuration [8].

Automation of SAS

Besides the execution of predefined attack scenario’s, ZAP can also
be configured to act as a proxy between a testing tool and the tar-
get application. In this proxy configuration ZAP will not make its
own requests so an additional tool is needed to perform the actual at-
tacks such as JMeter. JMeter is a command-line tool that can perform
parameterized requests against an API. Using JMeter’s GUI, one can
easily generate the XML files that define a test case. JMeter cannot de-
tect vulnerabilities and therefore ZAP is inserted as a proxy between
JMeter the target application. If required, JMeter can be configured to
include malicious payloads for example Fuzz Testing.

Automation of BDST

ZAP can be used in combination with a BDD framework in order to
perform high level use cases such as signing up, uploading files or
filling in multi-stage forms. Such a framework is SeleniumBase [3],
a wrapper for Selenium [8], which mimics user behavior to automate
security testing for the aforementioned use case. A convenient way for
developers to define the test cases for BDST is the Selenium IDE Kat-
alon. It allows the recording of user activities on the web application
such as clicking a button and converts them into an executable Python
file. SeleniumBase executes these tests through the Pytest framework
[2]. Similar to SAS, ZAP is inserted as a proxy between SeleniumBase
and the target application.

3 Testing in CI/CD pipelines
Continuous integration and continuous deployment pipelines are soft-
ware engineering processes used in DevOps in order to improve
the efficiency of projects [4]. Such pipelines can have varying de-
grees of complexity, ranging from automated execution of unit- and
integration-tests to full automated approval and deployment to a pro-
duction server. Freely available technologies like GitLab CI3 sup-
port managing these processes. A pipeline consists of multiple stages
where each stage consists of a sequence of processes that manage
building, testing and deployment of a system. A failing process stops
the entire pipeline and hence deployment of the application is blocked
automatically until the problem is resolved.

The extensiveness of a CI/CD pipeline can be divided into three cat-
egories, each building on top of the previous: 1) continuous integra-
tion, 2) continuous delivery and 3) continuous deployment [4]. The

3https://docs.gitlab.com/ee/ci

Fig. 4. The different stages of a CI/CD pipeline including continuous
integration, continuous delivery and continuous deployment [13]

steps included in these categories can be seen in Figure 4. Further-
more, a pipeline can be configured to have varying degrees of com-
plexity for different branches. For regular development, it is undesir-
able to execute slow tests because longer pipelines inevitably intro-
duce delays in the the development process. However, for branches
that are updated much less frequently such as those that are deployed
to a testing or production server it is desirable to execute these slower
but much more extensive tests in order to get better and more accurate
test coverage.

3.1 Stages of a typical CI/CD pipeline

In agile software development, a new feature goes through a number
of stages in a short time-span such as development, acceptance testing
and deployment. Those stages are Continuous Integration, Delivery,
and Deployment.

Continuous Integration

At the beginning, there is the development of a new feature where a
developer writes the code and test cases. Tests are first executed locally
until the feature is considered to be ready for testing [16]. At this point,
the code is committed and pushed to a remote repository and a merge
request will be created. This process will trigger the CI/CD pipeline
for the application as a whole, where the new feature is combined
with work from other developers. When all test cases have passed the
DevOps team can decide to advance to the testing stage.

Continuous Delivery and Continuous Deployment

Continuous Delivery builds on top of continuous integration by au-
tomating the deployment of the work done in a sprint to a testing server
[4]. This additional step is triggered whenever a new feature is merged
into the testing branch which will in turn run all tests from the continu-
ous integration step to ensure that the merge did not break any existing
work. In addition to this, more extensive test cases can be executed
in order to cover much of the acceptance testing that would otherwise
have to be done manually. This shifts the workload for management
from doing actual testing to verifying that the automated tests did their
job correctly. Assuming that tests are thorough and well-defined, one
can be assured that a feature works correctly as long as the tests pass.
Assuming, of course, that the tests are thorough and well-defined.

Another extension of continuous delivery is continuous deploy-
ment, where an approved version of the testing server will be deployed
to a production environment [4]. In this step the configuration of the
application is updated to make it ready for production by disabling
features used only for development and updating application secrets.
Because this updated configuration has not been tested before, it may
contain additional vulnerabilities. Therefore it is necessary to run all
previously executed tests one last time. When the pipeline passes, the
application is deployed to the production server where new features
are made available to the user.

4 Methodology

In this section we discuss the integration of the three automated test
techniques described in Section 2 into CI/CD pipelines. This enables
us to not only evaluate the effectiveness of these techniques but also to
identify challenges of applying DAST techniques to CI/CD. The find-
ings can be helpful for software practitioners to extend their existing
testing techniques and thus help to improve security quality of agile
web development.

SC@RUG 2020 proceedings

47

In addition to the tools that help to automate security testing, we
used several other technologies in order to provide a test environment
that can be executed on any CI platform. In order to build, execute and
share the required applications involved in the particular test cases,
we used the virtualization software Docker4. Docker enables us to
containerize every application and run it e.g. locally or remotely in the
CI environment. Further, the Docker Compose tool allows to create
and combine multiple containers which is important to connect the
different testing tools with the test application. For the CI environment
we decided to use GitLab CI. The usage of this cloud platform is not
only free but also provides CI/CD pipelines as a service5.

Finding a way to test the integration of automated DAST in CI/CD
is challenging because it requires an adequately sized web application
in order to make statements about the different security tests. Since
it is out of scope of this study to develop such an application with
specific vulnerabilities, OWASP WebGoat was chosen as a target ap-
plication. WebGoat is a deliberately insecure application that was de-
signed for educational reasons on the one hand and for testing security
tools on the other hand. We decided to use this open source project
because its 89.100 lines of code represent a reasonably sized web ap-
plication. In addition, the WebGoat community already provides a
WebGoat docker image which can be pulled directly from the public
repository. Furthermore, the documentation of WebGoat includes in-
formation about its vulnerabilities such as SQLi, and how to exploit
them.

A CI pipeline has been implemented for all three testing approaches
in order to demonstrate that this approach works for a variety of testing
tools. Each pipeline has been divided into three stages: build, test, and
deploy.

Building of docker images is executed in the build stage of the
pipeline. Each testing approach requires two docker images to be built,
resulting in a total of 6 images being built. In order to speed up this
process, each build is executed as a separate parallel job. A build job
consists of three steps: First, a login to a remote docker repository is
required. Secondly, the docker images are built and and tagged using
the commit hash of the current branch. This allows us to push images
multiple branches to the same repository without them interfering with
each other. Finally, the images are pushed to the remote repository so
they can be used in the next stage.

The second stage is testing, where the images from the previous
stage are pulled from the remote docker repository and security tests
are then executed. This stage uses a docker-compose in docker image6,
allowing us to run the test setup exactly as one would do on a local ma-
chine. Because the images must be pulled from a remote repository, a
custom python script is used to update the build section of the compose
file with an image entry pointing to the remote repository. Results are
written into a volume that is shared with the CI pipeline. The contents
of this directory are exported as GitLab CI artifacts.

Tools such as PyTest and JMeter require a running application to
test. Since docker-compose’s container dependency feature does not
wait for a web server to be ready, this had to be implemented manu-
ally. For this the wait-for-it.sh7 was used to delay starting the testing
process until all dependencies are ready to respond to requests.

ZAP and WebGoat are web services that keep running until they
are explicitly stopped. This means that without sending a shutdown
signal, the CI/CD pipeline will never terminate. Therefore, at the end
of the testing step a shutdown command is sent to ZAP through its
API. This results in a graceful termination of ZAP. However, WebGoat
does not provide such an endpoint and therefore a different approach
is needed. In order to ensure that WebGoat terminates after testing,
the testing tool’s image has been constructed using the same docker-
compose in docker image as the CI pipeline itself. In order to make
this work, a volume must be mounted into this image to make the
pipeline’s docker daemon socket available to docker inside the testing

4https://www.docker.com
5https://docs.gitlab.com/ee/ci
6https://hub.docker.com/r/docker/compose/
7https://github.com/vishnubob/wait-for-it

tool’s image. After test execution the testing tool is then able to call
the docker kill command. This will cause WebGoat to terminate once
testing is complete.

The aforementioned artifacts that were exported in the previous
stage are imported into an evaluation step. This last step then exe-
cutes a python script that reads the JSON output from ZAP, and uses
this to decide whether the pipeline should pass or fail. If a pipeline
should fail, it is sufficient to exit the script with a non-zero status code.
For an actual production setup, this step would then be followed by a
deploy step. This deploy step will only be executed if the evaluation
script exits with a zero as status code.

Integration of WAST in CI/CD

For the WAST integration we used the containerized ZAP and Web-
Goat containers. In order to control the tests, we added another con-
tainer containing a simple script written in Python. The script makes
use of the Python ZAP client library. With this library, one can eas-
ily control pro-active scans of ZAP. It receives the URL address of
the WebGoat application as an argument to trigger passive and active
scans in ZAP. This setup allows a complete scan of the WebGoat ap-
plication. After the scans are finished, the aforementioned methods
are used in order to terminate the docker-compose setup and evaluate
the test results.

Integration of SAS in CI/CD

For the SAS test scenario we used again the containerized ZAP ap-
plication for detecting malicious HTTP traffic. However, ZAP is now
used in proxy mode and hence only forwards all traffic to the target
application and analyses the responses. As was explained in Section
2, we used JMeter to execute specific API scans. Therefore, we in-
stalled JMeter and the .jmx files in into a docker container. In order
to execute the tests one has to add entrypoints to the container that
takes arguments and forwards them to the JMeter CLI inside the con-
tainer. Thus, we can dynamically specify test files and setups ZAP as
the proxy. This is important to detect security issues within the HTTP
communication initiated by JMeter.

Integration of BDST in CI/CD

For the BDST technique we applied the SeleniumBase framework,
which is installed in its own docker container together with two test
cases. The first test case registers in the WebGoat application and
the second uses the credentials created to log in and perform an SQLi
attack. Similar to the JMeter docker container we needed to add an
extra docker entrypoint in order to start seleniumbase via the docker-
compose command section. Because the seleniumbase configuration
refuses to accept the default docker-compose generated host names to
configure ZAP as proxy (docker-compose gives random IP addresses
to each container which can then be accessed using a mnemonic host
name), we had to add a customized docker network to introduce static
IP addresses to each container in order to configure scanning for vul-
nerabilities while the test is executed. Before we could execute the
tests we had to change the URLs in the test cases to the new docker
environment. This is because the automatic generated selenium files
uses the URLs of the local setup during recording rather than the one
used in CI/CD.

5 Results

In this section we present our findings that we encountered during the
integration and execution of the automated DAST in CI/CD. The re-
sults for every test for each CI job can be downloaded from the GitLab
CI interface. This reveals that all three security tests have detected
vulnerabilities 8. The detection of these vulnerabilities cause the eval-
uation step of the pipeline to fail as intended. A single CI job, cov-
ering all three test scenarios, takes 14 minutes and 6 seconds. This
run-time includes building of all components, starting the applications,

8All results are derived analysing this CI job https://gitlab.com/
rvbuijtenen/continuous-security/pipelines/128935397

Continuous Security Testing: A Case Study on the Challenges of . . . – Remco v. Buijtenen and Thorsten Rangnau

48

Table 1. Vulnerabilities detected for each automated DAST technique

Test
Type

Tests Inform. Low Medium High Total

WAST 13 URLs 7 6 1 1 15
SAS 1 URL 1 3 0 0 4
BDST 2 UCs 32 28 0 0 50

performing the tests, evaluating the results of all tests, and exporting
the artifacts containing the detected vulnerabilities. Subsequently, the
three test techniques will be discussed individually. All setups used
the WebGoat application as a service under attack, which is deployed
using an already existing docker image. Therefore, it has no building
time.

Results for WAST, SAS and BDST CI Jobs

WAST included three docker containers. The building time
for ZAP container is 6 minutes and 52 seconds and the con-
tainer used to control ZAP requires 1 minute and 32 seconds.
The execution of WAST takes 6 minutes and 4 seconds in to-
tal. The passive scan identified 13 resources along the path
http://webgoat:8080/WebGoat/ and the active scan detected
15 vulnerabilities. ZAP categorized those vulnerabilities by risk which
results into 7 “Informational”, 6 “Low”, 1 “Medium”, and 1 “High”
risk. The vulnerability with the high risk was detected on the ad-
dress http://webgoat:8080/WebGoat/register.mvc and
denotes this resource to be vulnerable against a SQLi attack. Finally,
the evaluation of this test technique took 1 minute and 8 seconds.

The SAS test setup also requires three components. The build time
for its two build components are: ZAP in 6 minutes and 9 seconds
and JMeter in 2 minute and 2 seconds. The run-time of the test
takes 2 minutes and 31 seconds. The test was performed against
http://webgoat:8080/WebGoat/login and ZAP detected
two addresses that are vulnerable. The first address is exposed to a
two “Low” risk vulnerability and one “Informational” risk. The sec-
ond address is liable against 1 vulnerability which is a “Low”risk.

The BDST setup needs to build two containers, namely ZAP and
SeleniumBase. The first component takes 6 minutes and 8 seconds
to build and the second 4 minutes and 31 seconds. The duration of
the test stage is 3 minutes and 45 seconds. During the two performed
behaviour driven tests, ZAP detected 32 vulnerabilities, composed by
28 “Informational” and 4 “Low” risk security issues. Interesting is that
one of the test cases included an SQLi attack where user passwords
were exposed inserting SQL commands into the username field. This
attack was not detected by ZAP. The evaluation of the test results took
1 minute and 5 seconds. An overview of these results can be found in
Figure 5 and Table 1.

Fig. 5. Build-, test-, and evaluation-time for all pipeline stages

Challenges of security testing in CI/CD

In contrast to the quantified results of the case studies, we also present
qualitative results because they are important to identify challenges

in the integration of automated DAST into CI/CD. Solutions to the
problems that are discussed here are presented in Section 6.

In the docker-compose setup of all three testing techniques, we en-
countered the problem that all containers were marked as ready but the
application inside the container was still starting. This resulted in tests
being triggered while WebGoat and ZAP were not ready. For SAS this
caused the program to exit without any test results, while for BDST
this caused the SeleniumBase container to crash with an error.

Another reoccurring problem was pipeline termination. Despite the
tests finishing as intended, the remaining docker containers were still
running. This is not a surprise because ZAP and WebGoat are stan-
dalone software systems that are designed to run until they are stopped
explicitly. If this is not done the CI job will never finish and one could
never determine if the dynamic security test has passed or failed.

A similar problem related to containerization was to get the results
form ZAP. Since zap provides its results through a web UI, there was
no clear way to extract these from the container. However, it is possible
to make an HTTP request that downloads the test results in JSON or
HTML format.

Another problem occurred with using SeleniumBase as BDD
framework. SeleniumBase can be configured to redirect requests
through a proxy which works fine in native installations. However,
SeleniumBase only accepts an IP address as a proxy target. Because
docker-compose assigns a dynamic IP to a container when it is started,
it is not possible to refer to this IP using the default configuration,
hence further customization is required.

Using SeleniumBase we defined a test case that performed an SQLi
against the WebGoat application. However, it turns out that we config-
ure is between the testing application and WebGoat’s UI, rather than
between WebGoat and its API. This resulted in ZAP not detecting the
presence of leaked information because the leak was outside of the
scope of what SeleniumBase was able to test.

6 Discussion

This study investigates how dynamic security test can be integrated
into CI/CD pipelines and what challenges software practitioners have
to meet with this integration. As the results show, all three tests can
be performed, vulnerabilities were detected applying existing tools for
test automation, and the evaluation of the results stopped the pipeline
which would prevent undesired deployment of security flaws to a pro-
duction system. This shows that adding security tests into CI/CD
pipelines in general is feasible. One can easily see that the tests de-
tected several security issues that were categorized on a low or even
informal risk level (Table 1). Depending on the scope of the system,
the evaluation of the ZAP results can be configured in such a way that
those alerts are ignored or only reported but do not lead to a pipeline
failure.

In order to prevent the introduction of additional delays into the de-
velopment process, it is important to keep the run-time of a pipeline
to a minimum. The duration of the resented pipeline is around 13
minutes. Adding more test cases will increase this run-time, but as
the project grows this can be reduced by distributing test cases among
multiple parallel CI jobs. Therefore, we consider this result as ad-
equate as it is acceptable for a software developer to wait around 15
minutes for the results of the scans. Note that this is only applicable for
SAS and BDST due to the definition of individual test cases. WAST
using ZAP in proactive mode provides no built-in functionality that
allows for distributed testing. If a WAST scan takes longer than what
is considered as an acceptable waiting time for regular development,
we recommend to only execute this type of testing for the continuous
delivery and continuous deployment stages of the project.

Building the ZAP image is the slowest part of the CI/CD pipeline.
A closer look at our setup shows that we use the same ZAP version to
build each docker image and this version is independent of individual
test configuration. Therefore, it is possible to create a pre-built version
of this image and host it in a public or private repository. Considering
that the run-time of the entire CI job is composed of the longest du-
ration of every stage, this would save approximately 4,5 minutes for

SC@RUG 2020 proceedings

49

WAST, 4 for SAS and 2 minutes for BDST. The image then only has
to be rebuild when a new version of ZAP is released.

We found that the WAST technique requires the least amount of
integration effort. However, the default setup of ZAP that was used
in this study is not capable of finding all resources since the pas-
sive scan cannot detect resources that e.g. require authorization [8].
Also, the run-time of passive and active scans grows with application
size. While testing the different automation techniques, we performed
a scan against the AltoroMutal test web application. This scan lasted
several hours and is therefore not feasible for testing every single com-
mit. For large projects we recommend to perform an entire scan only
before a release.

The BDST allows testing from the perspective of a hacker. The
setup that is suggested is capable of performing these scenarios as our
two test cases show. However, ZAP was not able to detect the SQLi
attack scenario. This is not a surprise because ZAP is only a proxy
between the BDD framework and the web application. The malicious
request however is send between the web application and its underly-
ing web service. In order to detect those security flaws we suggest to
use SAS in addition to BDST to analyse the requests sent to the web
service’s API.

The SAS testing technique is the most flexible because it allows
to test every single endpoint individually. This is important as was
shown by the previous example of BDST. However, creating and man-
aging tests for every single endpoint of an API can become increas-
ingly complex for large applications. Furthermore, the flexibility of
the tests can easily lead to forgetting certain aspects in the tests. There-
fore, we suggest to consider SAS already in the API design. The team
should fall back to the experience of a security expert in order to de-
termine possible attack scenarios against this API. Subsequently, the
API development should follow test driven development (TDD) and
start with creating the SAS test case.

Solving the challenges of security testing in CI/CD

As was stated in Section 5, we encountered several challenges dur-
ing our case studies. Generally speaking, we found that many of these
challenges come from the isolated nature of containerized applications
and therefor a fair amount of knowledge of tools like Docker and Git-
Lab CI are required. In the remainder of this section we discuss how
we managed to overcome most of these challenges.

The first problem we encountered was related to the startup order of
services, where testing tools were executed before ZAP and WebGoat
were ready for requests. For this, we added the wait-for-it.sh9 script
to each docker container. In addition to this, we added a customized
entrypoint for the testing container that uses this script to wait for the
other services to be up and running. This is achieved by attempting to
make an HTTP request to a known endpoint of the dependencies until
it succeeds. The result is that the testing container is paused until all
services are available, thus solving this issue.

The second problem was that the CI/CD pipeline did not terminate
within the given timeout of 1 hour due to web services that wait for
requests until an explicit shutdown command was given. We have
extended the aforementioned entrypoint to make a CURL request to
ZAP’s shutdown endpoint, resulting in a graceful termination of the
ZAP container. For WebGoat, another approach was required since it
does not provide an API endpoint like ZAP does. Instead, we used
the docker-in-docker image to use the docker kill webgoat command
to terminate WebGoat.

In order to extract results from ZAP’s web UI, we mounted a vol-
ume for results into the testing containers (JMeter and SeleniumBase).
Since it takes a few seconds for ZAP to aggregate the results, we added
a 10 second delay after test execution followed by a CURL request to
ZAP’s UI to extract the HTML and JSON results. These were then
written to the volume, and the contents of this volume were then ex-
ported as a GitLab CI artifact that can be downloaded by developers.
This delay and the execution of CURL requests were once again added
to the aforementioned entrypoint.

9https://github.com/vishnubob/wait-for-it

The problem that we encountered with SeleniumBase only accept-
ing a fixed IP address as its proxy address was solved using a custom
virtual network defined in our docker-compose setup. This allowed us
to assign a fixed IP address to each image, which in turn enables us
to provide this fixed IP to SeleniumBase resulting in it correctly using
the ZAP container as a proxy for the test cases.

7 Future Work
A possible future extension of our work is to improve the reporting of
results. Currently, we take the output provided by ZAP for all three
testing methods as-is and aggregate them into a single ZIP file. A
drawback of this approach is that results from multiple testing meth-
ods are reported separately, and this may result duplicate vulnerability
detections. Therefore it would be a good extension to further process
these results and provide a single, well organised method of reporting
the results. Furthermore, in the case of SAS, ZAP does not distinguish
between multiple tests against the same endpoint. Therefore it is nec-
essary to find a way to map these results back to individual test cases
to provide clear results to developers.

References
[1] Owasp top ten. https://owasp.org/

www-project-top-ten/. Accessed: 27-02-2020.
[2] Pytest (https://docs.pytest.org/en/latest/contents.html). Accessed: 22-03-

2020.
[3] Seleniumbase (https://seleniumbase.com/). Accessed: 16-03-2020.
[4] S. A. I. B. S. Arachchi and I. Perera. Continuous integration and continu-

ous delivery pipeline automation for agile software project management.
In 2018 Moratuwa Engineering Research Conference (MERCon), pages
156–161, May 2018.

[5] G. EU.org. Gdpr eu.org - fines and penalties. https://www.
gdpreu.org/compliance/fines-and-penalties/. Ac-
cessed: 26-02-2020.

[6] B. Fitzgerald and K.-J. Stol. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software, 25, 07 2015.

[7] T. Hsu. Hands-On Security in DevOps: Ensure Continuous Security,
Deployment, and Delivery with DevSecOps. Packt Publishing, 2018.

[8] T. H.-C. Hsu. Practical security automation and testing: tools and tech-
niques for automated security scanning and testing in devsecops. 2019.

[9] J. Humble and J. Molesky. Why enterprises must adopt devops to enable
continuous delivery. 24:6–12, 08 2011.

[10] S. Kraemer, P. Carayon, and J. Clem. Human and organizational fac-
tors in computer and information security: Pathways to vulnerabilities.
Computers Security, 28:509–520, 10 2009.

[11] M. Kreitz. Security by design in software engineering. SIGSOFT Softw.
Eng. Notes, 44(3):23, Nov. 2019.

[12] R. K. Lenka, S. Kumar, and S. Mamgain. Behavior driven development:
Tools and challenges. In 2018 International Conference on Advances in
Computing, Communication Control and Networking (ICACCCN), pages
1032–1037, Oct 2018.

[13] A. Mehdi. Continuous release practices are evolving, here is
our story (https://medium.com/the-telegraph-engineering/continuous-
release-practices-are-evolving-here-is-our-story-2a4d164e9cac). Ac-
cessed: 23-03-2020.

[14] P. M. Mell and T. Grance. Sp 800-145. the nist definition of cloud com-
puting. Technical report, Gaithersburg, MD, USA, 2011.

[15] H. Myrbakken and R. Colomo-Palacios. Devsecops: A multivocal litera-
ture review. pages 17–29, 09 2017.

[16] N. Tomas, J. Li, and H. Huang. An empirical study on culture, automa-
tion, measurement, and sharing of devsecops. pages 1–8, 06 2019.

[17] J. Willis. What devops means to me. https://blog.chef.io/
what-devops-means-to-me/, 07 2010. Accessed: 26-02-2020.

[18] H. Yasar and K. Kontostathis. Where to integrate security practices on
devops platform. International Journal of Secure Software Engineering,
7:39–50, 10 2016.

[19] P. Zech. Risk-based security testing in cloud computing environments. In
2011 Fourth IEEE International Conference on Software Testing, Verifi-
cation and Validation, pages 411–414, March 2011.

Continuous Security Testing: A Case Study on the Challenges of . . . – Remco v. Buijtenen and Thorsten Rangnau

50

A survey on surface interrogation methods

Luc Breeman and Robert Riesebos

Abstract— In geometric modelling, computer-aided design, and computer graphics shape smoothness can be an important attribute
of a surface. In order to ensure that a surface is sufficiently smooth, a process called surface interrogation is applied. In this process
the surface is analysed in order to detect and fix irregularities. The smoothness and quality can be assessed with the help of lines
displayed on a shape or surface. Several surface interrogation methods exist, such as contour lines, isophotes, highlight lines and
reflection lines. In this paper an overview of these methods is provided, comparing them on criteria such as sensitivity to changes,
intuitiveness and relation to underlying smoothness. Finally recommendations are given on when to use which method.

Index Terms—Geometric Modelling, Computer Aided Design, Computer Graphics, Surface Interrogation, Surface Smoothness, Con-
tour Lines, Isolines, Isophotes, Highlight Lines, Reflection Lines

1 INTRODUCTION

Computer Aided Design (CAD) has become a standard design tool for
architecture, engineering and construction [2]. Several sectors employ
the use of CAD systems for the design process of their products.
Examples include the automotive industry, aviation industry and
ship design sector [20, 24]. An important aspect of Computer Aided
Design is the evaluation of surfaces, mainly with respect to their
smoothness. Cars require smooth surfaces for optimal performance
and visual appeal, ship hulls need smooth surfaces in order to have as
little friction as possible, and blades in aircraft engines require exact
sizes in order to work efficiently and effectively. Smooth surfaces are
also essential for creating high quality 3D models.
In order to guarantee that the generated surfaces are as smooth as
the product requires, engineers perform a process called “surface
interrogation”. As the name suggests, they take a detailed look at the
surface in order to detect and correct surface irregularities. Surface
interrogation methods provide engineers with tools to analyse the
intrinsic shape and curvature of surfaces, with the goal of finding
anomalies and imperfections [13].
Each surface interrogation method has its benefits and drawbacks.
Certain situations require the use of one method over another, while in
others it is simply a matter of preference of the engineer. This survey
aims to provide a clear overview of several surface interrogation
methods, and serve as a pointer on when to use which method. We
present a comparison between four surface interrogation methods:
contour lines, isophotes, highlight lines and reflection lines. A
thorough literature research has been done to gain knowledge of each
method. We applied this knowledge to compare the methods and
constructed example surfaces to aid our explanation. For each method
we first give a short theoretical background. Then we provide a more
detailed analysis and comparison. Finally recommendations on which
methods are best suited for certain tasks are given, followed by a
conclusion highlighting the results of this survey.

In Section 2, we introduce four surface interrogation methods
and provide theoretical definitions of each method. Section 3
discusses the pros and cons of each methods, along with special prop-
erties of each method. In Subsection 3.5 a direct comparison is made,
comparing the methods on the properties of maximum observable
surface continuity, sensitivity to changes, view-point dependency and
intuitiveness. In Section 4 we provide recommendations on when to
use which method. Finally, in Section 5, we provide a conclusion and
an indication of possible future work in this field of research.

• Luc Breeman, Msc. student Computing Science at the University of
Groningen, E-mail: l.breeman@student.rug.nl.

• Robert Riesebos, Msc. student Computing Science at the University of
Groningen, E-mail: r.j.riesebos@student.rug.nl.

Fig. 1: Isophote illustration (adapted from [13])

2 SURFACE INTERROGATION METHODS

Several surface interrogation methods exist for the purpose of
analysing surfaces. In this section, we introduce the four surface in-
terrogation methods discussed in this survey. General information and
a theoretical definition of each method is given in order to familiarise
the reader with the details of each method.

2.1 Contour lines
The use of contour lines, also referred to as isolines, provide a natural
interpretation of computer-generated curves surfaces [5]. So called
“contour-maps” are created by intersecting the interrogated surface by
a family of user-defined, (non-)uniformly spaced parallel planes [5, 8].
In this survey we discuss contour maps where the distance between
each ”contour-level” remains constant. This can formally be described
as z = constant for a 3d surface, with the 3 axes x,y,z defining the
space [20].
The contour lines representing different levels, referred to as “level-
curves”, are spaced at equal intervals. Contour-maps enable the user
to identify critical points of the surface, which are points with special
properties. Examples of these points are minima, maxima and saddle
points, where saddle points represent critical points where two contour
lines intersect [5].

2.2 Isophotes
Isophotes are curves of constant light intensity on a surface [12, 20,
22]. They are represented by lines connecting all points on a surface
for which the isophote condition, given by Equation (1), holds.

51

Fig. 2: Highlight line illustration (adapted from [6])

If X(u,v) is a parameterization of a surface and L is the direction of
a parallel lighting — a lighting produced by a point light source at
infinity with direction L — then the isophote condition is given by:

N(u,v) ·L = cos(θ) = c , (1)

where N(u,v) is the unit normal vector of the surface X(u,v) and c is
a constant representing the light intensity on the surface. The angle
θ represents the angle between the unit normal vector N(u,v) and the
light direction unit vector L [12, 22].
The isophote condition holds for angles θ ∈ [−90,90], but in practi-
cal applications such as surface interrogation only angles between 0
and 90 degrees (θ ∈ [0,90], c ∈ [0,1]) are considered [20, 22]. This
is because only curves with angles between 0 and 90 degrees are in
the illuminated part of the surface. A visual representation is given in
Figure 1.
If the surface is Ck-continuous, then the isophote will be Ck−1-
continuous [12, 15, 22, 26]. For planar parts of the surface all normals
are parallel and isophotes are not well defined. In case of c = 0 the
light direction is perpendicular to the surface normal, and the isophote
is the surface silhouette. Finally, for c = 1 the light direction is per-
pendicular to the surface.

2.3 Highlight lines
Highlight lines can be effectively used as smoothness indicators for
smooth surfaces. By moving the light source, the user is able to sweep
the highlight line over the entire surface, thus enabling him/her to in-
spect the whole surface [6, 28]. As with isophotes and reflection lines,
the calculation of highlight lines involves solving a system of partial
differential equations. Highlight lines can be described by the follow-
ing set of equations [28]: We denote a linear light source L(t), with
the definition

L(t) = L0 + t ·~s, where t ∈ R . (2)

L0 is a point on L(t), and~s represents a vector defining the direction of
L(t). For a surface point P, let N be the normal vector of the surface
at P.
The line at E(s) that passes through Q in the direction of N can be
defined by the formula:

E(s) = P+N · s . (3)

In order to know if point Q belongs to the highlight line, L(t) and E(s)
have to intersect, which is true if the perpendicular distance d, given
by (4), is zero.

d =
|(~s×N) · (L0−P)|
‖ (~s×N) ‖ . (4)

Highlight lines have two interesting properties that make them suit-
able for surface interrogation [6]. The first one is that a highlight line

Fig. 3: Reflection line illustration (adapted from [13])

is viewer independent. The line is not dependent on the viewing point
and angle of the user, and thus does not require new calculations if the
user wants to view the surface from another view-point.
The second property is the fact that imperfections of a surface are mag-
nified by an order of one in the highlight line. There are several orders
of discontinuity in surfaces, and highlight lines have the ability to mag-
nify these imperfections. The order of one relates to how the highlight
lines react to this imperfection. The involvement of surface normals
in the calculations means that small changes in the surface result in
changes of the surface normals, which get magnified during the cal-
culations of the highlight lines. This enables the user to clearly spot
small imperfections in the interrogated surface.

2.4 Reflection lines
Reflection lines were first introduced by Klass in [17]. Much like high-
light lines, reflection lines are used to determine unwanted curvature
regions (dents) by inspecting irregularities in the reflection line pattern
of parallel light lines. The main difference between reflection lines and
highlight lines is that the view point is fixed for reflection lines [6, 17].
To start with explaining reflection lines we again let X(u,v) be a pa-
rameterization of a surface and N(u,v) the unit normal vector of the
surface. We define a reflection line as the reflected image of a straight
line L on a surface seen from a fixed view point A. Line L is the so-
called light line, and is defined in Equation (2). Next, to formulate a
reflection condition for a reflection point P on surface X(u,v), we ab-
breviate normalized directions PA and PL to~a and~b respectively.
Using these abbreviations and Figure 3 we can derive the following
reflection condition:

~a+~b = 2(N(u,v) ·~b)N(u,v)
= 2(N(u,v) ·~a)N(u,v) .

(5)

After a simple transformation of Equation (5) we obtain Equa-
tion (6), providing a relation between the light point, view point and
reflection point [17, 12, 20].

~a = 2(N(u,v) ·~b) N(u,v)−~b (6)

This relation can be used to evaluate a curve on the surface. When
we move L on the light line given by Equation (2) and keep A fixed,
point P will move in a curve on the surface; creating the reflection line.

As explored in [26], isophotes and reflection lines are different
(but not disjunct) classes of surface curves. To show this, the
definition of reflection lines can be simplified in such a way that they
are only dependent on the surface normals, and not on the view-point
and light line. This enables us to directly compare the two methods.

3 COMPARATIVE ANALYSIS

In this section we perform a comparative analysis of the surface inter-
rogation methods introduced in Section 2. Before we do so, we first
provide visual examples to illustrate each method.

A survey on surface interrogation methods – Luc Breeman and Robert Riesebos

52

(a) Base surface (b) Contour lines

(c) Isophotes (d) Highlight/reflection lines

Fig. 4: Result of different surface interrogation methods on the same
base surface

Fig. 5: Combined results of contour lines, isophotes and high-
light/reflection lines

The images in Figure 4 were created using Autodesk Alias Surface
2020 [4]. The base surface in Figure 4a is a C2-continuous surface.
It is manipulated to have a small irregularity below the bottom-most
corner, where it is dented in a downwards direction. Patches of a
compound surface are divided by blue lines. The lines in Figure 4d
represent both highlight lines and reflection lines because the view
point is stationary. In Figure 5 a larger image is provided showing all
methods in one figure. Finally, Figure 6 shows a surface with a similar
irregularity as Figure 4a, but this time the surface is C1-continuous.
Isophotes and reflection/highlight lines are drawn on this surface in
black and green respectively.

In the next few subsections advantages and disadvantages of
each surface interrogation method are discussed, along with general
information and properties unique to the method. A comparison table
is provided to give a clear view of how all of the methods compare.

3.1 Contour lines
Contour lines provide a simple yet unambiguous view of the surface
to the user. Since these lines relate directly to the shape of the surface,
the user is able to quickly get an idea of the shape of the surface [9].
Contour lines are excellent for spotting interesting surface features

Fig. 6: Isophotes and reflection/highlight lines on a C1-continuous sur-
face

such as ridges and valleys. They also allow the user to find special
points on the interrogated surface, such as maxima, minima and
saddle points [5]. Contour lines are able to describe 3d features in
a 2d medium, thus providing more information of the surface than
only looking at the rendered surface [21]. This can be clearly seen in
Figure 4b. The irregularity of the surface in Figure 4a can be difficult
to spot. The exact position of the surface irregularity can be easily
identified in Figure 4b, along with the impact of the irregularity on the
rest of the surface.
However, the use of contour lines also has several downsides. The
process of generating a contour map requires solving plane intersec-
tion problems for a number of planes. A mathematical solution of
these problems require high computational effort, especially for a
large number of planes. Guid et al [10] mention that parabolic lines,
as well as convex and concave regions, are difficult to recognise,
and can only be approximated. Because of the nature of contour
lines, contour maps have poor sensitivity to small changes in the
interrogated surface. The user is also responsible for selecting good
interval between each plane, in order to get the best results. Finally,
contour lines are only able to distinguish C0 continuity between
surface patches [10]. In short, this indicates that contour lines are able
to show the overall shape of the surface, but are not able to provide
information about the details of the smoothness of the surface.

Since finding a mathematical solution for the plane intersection
problem is costly to compute, a common alternative is to develop
algorithms that approximate a solution to the intersection problem.
Numerous solutions work by dividing the surface into small sub-
patches, after which a search is done to find the subpatches that
intersect the plane. Finally, a line is drawn between these patches
to form the contour line. Examples of algorithms that employ this
approximation method can be found in [21], [24] and [29]. Lee and
Fredericks [18] propose a different algorithm that relies on solving
a series of rewritten equations in order to calculate the intersection
curves. The algorithm requires the surface to be defined by a specific
mathematical formula, and employs a rewritten equation in order to
calculate tangents to the surface, which it can use to estimate the
intersection points. This requires the surface to be defined in a special
way, but the equations can be solved efficiently by the computer.
All in all, the mathematical solution for the intersection problem for
each contour plane can be costly to compute. However, approximate
solutions provide reasonable results in reasonable time.

3.2 Isophotes

As discussed in Section 2, isophotes are curves connecting points of
equal light intensity on a surface. Isophotes are Ck−1-continuous when

SC@RUG 2020 proceedings

53

the surface is Ck-continuous, which makes them very suitable for de-
tecting the continuity order between patches of a compound surface
[10]. When looking at Figure 4c and Figure 6 we can observe that the
isophotes are only drawn near the fabricated irregularities and not at
the planar parts of the surface. This is because isophotes do not exist
on plane surfaces.
To illustrate that isophotes can be used to detect the continuity or-
der between patches of a compound surface, we take a closer look at
the isophotes in Figure 6. The isophotes are continuous at the patch
boundaries, but their first derivatives are not, as seen by the abrupt
changes in direction between patches. Because of this the isophotes
are C0-continuous. This indicates that the base surface is at most C1-
continuous.
Using isophotes to perform surface interrogation should be done with
care because an ill-conditioned light direction can lead to properties of
the isophotes not being recognized [12]. For example a C0-continuous
isophote can be mistaken to be C1-continuous. This is compounded
by the fact that isophotes are view-point independent. To alleviate this
problem, the view-point can be used as light direction, causing the
isophotes to update when the view-point is moved [3, 4]. Another po-
tential disadvantage of using isophotes is that the user has to specify
for how many values of c Equation (1) has to be evaluated. This intro-
duces the problem that we can test a high number of values, but still
not be certain that there is a discontinuity in an unexplored value [12].
In modern applications such as Autodesk VRED [3], isophotes (as
well as highlight and reflection lines) are implemented using ray trac-
ing. In [12] and [19] algorithms are discussed using surface point sam-
pling. The run-times of point sampling based methods are discussed in
[10] and [19], and range from 10 to 150 seconds on extremely outdated
hardware. As of writing this paper, point sampling based methods, as
well as the ray tracing method, can be run in real time.

3.3 Highlight lines

Highlight lines make use of light reflections in order to show
information about the surface. Since reflections are intuitive to
understand for humans, highlight lines are an effective method for
detecting irregularities in surfaces. They provide an intuitive view
for the user [6]. The reflection of these irregularities on the surface
do not correspond to the expected reflections if the surface was flat,
thus showing a visual indication to the user of a surface irregularity.
In Figure 4d the exact position of the surface irregularity is easy to
identify, since all highlight lines converge to that point, as well as give
an indication of the surface features surrounding the irregularity.
Highlight lines are calculated independent of the users viewpoint, and
are only sensitive to the position of the light source. This enables the
user to view the surface interactively without requiring to recalculate
the highlight lines. The user is able to move the light source in order to
analyse the surface by looking at how the highlight lines change [28].
The smoothness, coherence and transitional pattern of the collection
of highlight lines can be used as indicators to show how smooth and
continuous the interrogated surface is [28]. Because of the use of
normals in the calculation of highlight lines, highlight line models
are highly sensitive to small changes in the surface. Finally, highlight
lines are Ck−1-continuous when the surface is Ck-continuous [15].

The original algorithm for generating highlight lines is given by
Beier and Chen [6]. Utilising an efficient traced contouring technique,
they developed a robust and fully automatic algorithm that is suited
for real-time calculations. Other methods have been proposed that
use highlight lines in order to smooth out surfaces. Non-uniform
rational B-spline (NURBS) surfaces are commonly used for this,
where NURBS is a mathematical model to generate and represent
curves and surfaces in computer graphics. Zhang and Cheng [28]
developed a method that allows a user to remove local irregularities of
NURBS surfaces by modifying highlight lines by using control points
on said surface. Gyurecz [11] expanded on this. He used the method
created by Zhang and Cheng [28], and applied a genetic algorithm to
find solutions for the placement of the control points after a highlight
line has been moved.

The calculation of highlight lines can be done quite efficiently and in
real time. Properties of highlight lines make them suitable to use in
methods for removing irregularities of a surface.

3.4 Reflection lines

Reflection lines simulate a real-world method used by automobile-
stylists to see if the shape of a car is acceptable: the car (model) is
placed in a room with parallel lines of fluorescent lamps on the ceil-
ing. The reflection lines of these lamps as seen on the (polished) car
surface are a good indication of the smoothness of the surface [17, 27].
Because reflection lines simulate the real-world, they are intuitive to
understand. Simulation of reflection lines involves calculating the so-
lution of a set of non-linear equations given by Equation (6). This
calculation has to be done for the unknown parameters u and v of each
reflection point to be determined.
Unlike highlight lines and isophotes, reflection lines are view-point
dependent. This can be disadvantageous because the existence of a
solution to the aforementioned non-linear equations is not guaranteed
for all view-points [17].
Reflection lines are, just like isophotes and highlight lines, dependent
on the normal vector, which in turn depends on the first derivatives
of the surface. Because of this, reflection lines have one order less
continuity than the considered surface [15, 25, 26]. This can also be
observed in Figure 6, by using the same reasoning as for the isophotes.
Methods to calculate reflection lines evolved from numerical integra-
tion of the differential Equation (6) [17], to using a method presented
in [14] that defines reflection lines using a family of splines derived
from the intersection curves of a surface and a family of planes. This
reduces the amount of needed computations. In [1], the computational
complexity is further improved by using iso-parametric lines [12, 20]
instead of the aforementioned family of splines. As of writing, CAD
systems are powerful enough to use real-time ray tracing [3] to simu-
late reflection lines.

3.5 Direct comparison between interrogation methods

To directly compare the different methods we consider four core
properties: the maximum observable surface continuity, sensitivity to
changes, whether they are view-point dependent and the intuitiveness
of each method. In Table 1 these properties are listed for each method.
Subsequently we provide a brief explanation of each property.

Table 1: Comparison of surface interrogation methods

Method Maximum
continuity1

Sensitivity
to changes

View-point
dependent

Intuitive-
ness

Contour lines C0 Poor No High
Isophotes C1 High No Low
Highlight lines C1 High No Medium
Reflection lines C1 High Yes High

1 Abbreviation for the maximum observable surface continuity

3.5.1 Maximum observable surface continuity

Since surface smoothness is a key aspect in surface interrogation, the
first property we compare each method on is the maximum observable
surface continuity. We define the maximum observable surface conti-
nuity as the highest order of continuity that can be determined using a
specific method. The maximum observable surface continuity implies
that all lower-order continuities can also be determined.
For contour lines the maximum observable surface continuity is C0

because only discontinuous curves can be discovered. The maximum
observable surface continuity of isophotes, highlight lines and reflec-
tion lines is C1, because these lines are Ck−1 continuous if the surface
is Ck continuous. In theory the maximum observable surface conti-
nuity of these methods is only limited by the maximum continuity a
human ‘interrogator’ can perceive, but we assume that a human can
not distinguish a C1-continuous line from a C2-continuous line.

A survey on surface interrogation methods – Luc Breeman and Robert Riesebos

54

3.5.2 Sensitivity to changes
Because isophotes, highlight lines and reflection lines are all depen-
dent on the surface normals they are very sensitive to minute changes
in the surface. This is a useful property because it allows us to de-
tect irregularities that might otherwise be missed. Contour lines are
not suitable for spotting these small irregularities, as they have a poor
sensitivity to changes in the surface.

3.5.3 View-point dependent
The convenience of a method being view-point dependent can depend
on the situation. For non view-point dependent methods the user is
able to analyse the lines from different view-points. This can be used
to show irregularities, or provide different views of a surface that can
aid the process of analysing the surface. Nonetheless, the view-point
dependent property of reflection lines cannot be regarded as a negative.
Moving the object, and thus changing the reflection lines, can provide
the user with an interactive way to spot surface irregularities.

3.5.4 Intuitiveness
We define intuitiveness in the context of this paper as “the ease with
which the information provided by the surface interrogation method
is interpreted and understood”. We are aware that this is a subjective
measurement, however there certainly is a difference in the intuitive-
ness of the methods, and therefore they can be compared on this prop-
erty.
The analysed methods show several levels of intuitiveness, ranging
from high to low. Contour lines and highlight lines provide the user
with a high level of intuitiveness. The shape of a surface can be easily
identified by looking at the contour lines, and important points such as
minima and maxima can be distinguished quickly. Since the reflection
of light is an intuitive property of light for most humans, the use of
reflection lines provides a natural way of analysing a surface. High-
light lines provide a part of this functionality. However, the fact that
highlight lines remain stationary while analysing can make them hard
to grasp. Isophotes provide the least amount of intuitiveness. Since
these lines do not model a phenomenon in real life, they can be hard
to understand. Even though contour lines also do not model a real life
phenomenon the information they provide is still intuitive to under-
stand for the user.

4 APPLICATIONS AND RECOMMENDATIONS

Each of the surface interrogation methods discussed in this survey has
its own unique properties. These properties make some methods more
suitable for certain tasks and situations than others. For each method
we provide existing applications, and recommendations of when these
methods are best applied.

Contour lines are able to give a broad and intuitive overview of
the shape of a surface. This method is well-suited for applications
such as geography, providing an intuitive view of a surface and
detecting special points on a surface such as maxima and minima.
Contour maps have also been successfully used for designing large
smooth surfaces, such as with ship hulls [24], plane fuselages and
turbine blades [20]. We recommend contour lines to be used in
situations where an intuitive broad overview is required, as well as
situations where large models are broadly designed and reviewed.

Uses of isophotes range from the design of car surfaces [22] to
designing and fairing ship surfaces [23], and they are even used to
inspect the shape and size of galaxies [7]. Furthermore, the special
case of c = 0 in Equation (1) can be used to construct silhouette
curves [16, 19]. We recommend to use isophotes when the primary
purpose is to inspect curved surfaces for small irregularities. When
using isophotes we recommend to try different light directions, and
various rotations of the surface to be inspected. This process can be
eased by using the view-point as light direction [4, 3].

The properties of highlight lines make them excellent for the
interactive evaluation of the smoothness of a surface [28]. This

method is highly sensitive to changes in the flow of a surface, thus it
can be effectively used to spot surface irregularities. Since highlight
lines are view-independent, the user can rotate the surface to spot
slight deviations in the generated highlight lines. The ability to
show these slight deviations makes this method a viable option for
the design of fully smooth surfaces, as can be found in car design
and airplane design. Another interesting application of highlight
lines is to use them as a tool for fixing surface irregularities, as
methods proposed by Gyurecz [11] and Zhang & Cheng [28] show.
We recommend the use of highlight lines for situations that require
a fine analysis of a surface, where view-independent and intuitive
representations are preferred.

Reflection lines originated from the automotive industry [14, 17]
and were used even before the computer era [15]. Because of
these origins, reflection lines are still primarily used in the process
of designing cars [27]. However, the ship-design industry also
uses reflection lines for surface interrogation [23]. Reflection lines
can not only be used to inspect surfaces, but also to correct them
[14, 17]. Our recommendation for the use of reflection lines is to use
them as an intuitive method to discover small surface irregularities,
when view-dependent behaviour is desired. Their use is strongly
recommended when evaluating car surfaces.

5 CONCLUSION

In this paper we have explored four different methods used for surface
interrogation: contour lines, isophotes, highlight lines and reflection
lines. First we defined each method using theory from the existing lit-
erature. Then we further explored the properties of each method and
compared them based on the maximum observable surface continu-
ity, sensitivity to changes, view-point dependency and intuitiveness.
We also incorporated visual examples for each method to aid the un-
derstanding of the reader. Finally, we provided applications for each
method, as well as recommendations on when each method is best
applied. Our recommendations for each method are as follows:

• Contour lines should be used for situations where an intuitive
and broad overview is required.

• Isophotes should be used when the primary purpose is to inspect
curved surfaces for small irregularities. When using isophotes
we recommend to try various light directions, and various rota-
tions of the surface or shape to be inspected.

• Highlight lines should be used in situations that require a fine
analysis of a surface, where view-independent and intuitive rep-
resentations are preferred.

• Reflection lines should be used as an intuitive method to discover
small surface irregularities, when view-dependent behaviour is
desired. Their use is strongly recommended when evaluating car
surfaces.

The goal for this survey is to act as a comprehensive resource on the
major surface interrogations methods. It is of significance because it
clearly delineates the different methods and provides clear recommen-
dations on their use and applications.

5.1 Future work
As for future work, we recommend to focus further research on devel-
oping the isophotes and reflection line methods, since these methods
are the most effective in finding surface irregularities and discontinu-
ities. Although current hardware is able to calculate these lines in a
reasonable time, further improvements of these algorithms could en-
able real-time interrogation of larger surfaces, or a faster analysis pro-
cess.
Additional research in isophotes and reflection lines might also lead
to discoveries about features and interesting properties of these lines.
These properties could be used as a base for new algorithms. A con-
crete example of this is mentioned in Section 3.3 and concerns high-
light lines being applied in automatic surface smoothing algorithms.

SC@RUG 2020 proceedings

55

Finally, future work could compare a wider selection of surface inter-
rogation methods. Examples of methods not included in this paper are
surface curvatures, curvature plots and focal surfaces. Surface curva-
tures are an example of a surface interrogation method that does not
utilize lines, but instead uses a colour mapping of the surface.

ACKNOWLEDGEMENTS

We would like to thank our expert reviewer Jiřı́ Kosinka and our col-
leagues for their valuable feedback.

REFERENCES

[1] S. Abrams, L. Bardis, C. Chryssostomidis, N. Patrikalakis, S. Tuohy, F.-
E. Wolter, and J. Zhou. The geometric modeling and interrogation system
praxiteles. Journal of Ship Production, 11:116–131, 01 1995.

[2] G. Aouad, S. Wu, A. Lee, and T. Onyenobi. Computer aided design guide
for architecture, engineering and construction. Routledge, 2013.

[3] Autodesk. 3D Visualization Software — VRED — Autodesk. https:
//www.autodesk.com/products/vred/overview.

[4] Autodesk. Alias — Industrial Design & Product Design Soft-
ware — Autodesk. https://www.autodesk.com/products/
alias-products/overview.

[5] J. M. Beck, R. T. Farouki, and J. K. Hinds. Surface analysis methods.
IEEE Computer Graphics and Applications, 6(12):18–36, 1986.

[6] K.-P. Beier and Y. Chen. Highlight-line algorithm for realtime surface-
quality assessment. Computer-Aided Design, 26(4):268–277, 1994.

[7] J. Binney, J. Binney, M. Michael, and M. Merrifield. Galactic astronomy,
volume 9. Princeton University Press, 1998.

[8] R. T. Farouki. The characterization of parametric surface sections. Com-
puter Vision, Graphics, and Image Processing, 33(2):209–236, 1986.

[9] A. R. Forrest. On the rendering of surfaces. In Proceedings of the 6th an-
nual conference on Computer graphics and interactive techniques, pages
253–259, 1979.

[10] N. Guid, Č. Oblonšek, and B. Žalik. Surface interrogation methods. Com-
puters & graphics, 19(4):557–574, 1995.

[11] G. Gyurecz. Removing local surface irregularities by modifying high-
light lines. In 2007 International Symposium on Logistics and Industrial
Informatics, pages 133–136. IEEE, 2007.

[12] H. Hagen, S. Hahmann, T. Schreiber, Y. Nakajima, B. Wördenweber,
and P. Hollemann-Grundstedt. Surface interrogation algorithms. IEEE
Computer Graphics and Applications, 12:53–60, 1992.

[13] S. Hahmann. Visualization techniques for surface analysis. In C. Bajaj,
editor, Data visualization techniques, pages 44–74. John Wiley, 1999.

[14] E. Kaufmann and R. Klass. Smoothing surfaces using reflection lines for
families of splines. Computer-Aided Design, 20(6):312 – 316, 1988.

[15] P. Kiciak. Geometric continuity of curves and surfaces. Synthesis Lec-
tures on Visual Computing: Computer Graphics, Animation, Computa-
tional Photography, and Imaging, 8(3):1–249, 2016.

[16] K.-J. Kim and I.-K. Lee. Computing isophotos of surface of revolution
and canal surface. Computer-Aided Design, 35(3):215 – 223, 2003.

[17] R. Klass. Correction of local surface irregularities using reflection lines.
Computer-Aided Design, 12(2):73–77, 1980.

[18] R. B. Lee and D. A. Fredricks. Intersection of parametric surfaces and a
plane. IEEE Computer Graphics and Applications, 4(8):48–51, 1984.

[19] A. Lennings, J. Peters, and J. Vergeest. An efficient integration of algo-
rithms to evaluate the quality of freeform surfaces. Computers & Graph-
ics, 19(6):861 – 872, 1995.

[20] N. M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer
Aided Design and Manufacturing. Springer Publishing Company, Incor-
porated, 1st edition, 2009.

[21] C. S. Petersen. Adaptive contouring of three-dimensional surfaces. Com-
puter Aided Geometric Design, 1(1):61–74, 1984.

[22] T. Poeschl. Detecting surface irregularities using isophotes. Computer
Aided Geometric Design, 1(2):163 – 168, 1984.

[23] N. S. Sapidis. Designing fair curves and surfaces: Shape quality in geo-
metric modeling and computer-aided design. SIAM, 1994.

[24] S. G. Satterfield and D. F. Rogers. A procedure for generating contour
lines from a B-spline surface. In Frontiers in Computer Graphics, pages
66–73. Springer, 1985.

[25] G. Sußner, G. Greiner, and S. Augustiniack. Interactive examination of
surface quality on car bodies. Computer-Aided Design, 36(5):425 – 436,
2004.

[26] H. Theisel. Are isophotes and reflection lines the same? Computer aided
geometric design, 18(7):711–722, 2001.

[27] D. E. Ulmet. Customized reflection lines for surface interrogation in car
body design. In Ninth International Symposium on Symbolic and Nu-
meric Algorithms for Scientific Computing (SYNASC 2007), pages 124–
129, Sep. 2007.

[28] C. Zhang and F. F. Cheng. Removing local irregularities of NURBS sur-
faces by modifying highlight lines. Computer-Aided Design, 30(12):923–
930, 1998.

[29] J. Zheng and C. Millham. A linear pivoting method for detecting and trac-
ing planar section curves of free-form surfaces. Computers & graphics,
16(4):411–420, 1992.

A survey on surface interrogation methods – Luc Breeman and Robert Riesebos

56

An Analysis on Code Smell Detection Tools

Anil P. Mathew, Filipe A. R. Capela

Abstract—Software correctness is considered one of the principal aspects of software maintenance and evolution. A well-known
issue that deteriorates software stability is the presence of code smells in the system. A code smell can be defined as any dangerous
practice found in the source code of a software; these smells impact systems in the long term, thus negatively affecting their main-
tainability. To mitigate this, detecting smells in the system at an early stage can reduce technical debt, allowing companies to reduce
monetary costs. Multiple code smell detection tools have been developed to detect code abnormalities in a system. These tools can
operate in one or more programming languages, primarily focusing on the Java environment.
For our analysis, we start by introducing the definition of what a code smell is, the segregation of these, and a brief explanation of the
most occurring code smells. Following that, we introduced the concept of technical debt, demonstrating its significance as a metric for
software evaluation. Subsequently, we conduct a comparative study to understand which are the most reliable code smell detection
tools to enhance software correctness. We started by gathering the most popular tools available and considering parameters like the
tool’s precision and recall, the languages they support, their usability, and the type of smells they detect.
Alongside our analysis, we review the results given in published papers on the topic, to measure the quality of the tools when applied
to Open-source projects and study their effects on the parameters mentioned previously as well as to understand how some tools
indicate different measures of technical debt, using different indexes.

Index Terms—Code smells; Technical Debt; Code smell detection tools; Software correctness

1 INTRODUCTION

Bad practices found on a piece of software, that can range from prob-
lems in the system’s architecture, internal design and source code are
defined as smells, namely architectural smells, design smells, and code
smells, respectively. In this paper we will be focusing on the last cate-
gory, code smells.

Code smells affect the system in the long term, which means that
the software may not reach it’s optimal state in terms of performance
or maintainability. The increasing maintenance cost of software is
commonly associated with poor software quality and improper cod-
ing standards. The maintainability of software is crucial since it is one
of the factors influencing the cost of future development activities. In
a report from CISQ (Consortium for IT Software Quality), the cost of
substandard quality software in the United States in 2018 was around
$2.84 trillion, with 50% of it being assigned to software malfunction
and bugs [1].

The software engineering community has performed extensive re-
search on identifying code smells. The first attempt was made in the
late 1990s by Fowler & Beck [2], demonstrating that the problem of
maintaining software and refactoring it has been affecting software
companies from the inception of software development. Several tools
have been developed to identify and point out solutions towards code
smells before a system is deemed as production-ready. Therefore,
companies and research groups have developed code smell detection
tools, which perform automated analysis. These rely on different de-
tection strategies, such as metric-based and visualization support. The
aim of these code smell detection tools is to allow developers to refac-
tor their code, saving them time and money, which can then be em-
ployed into developing new features.

There exist a plethora of code smell detection tools, and develop-
ers find it challenging to decide which proves more beneficial to their
needs. This paper demonstrates the current state of the problem with
regards to how code smell detection tools can prove to be beneficial
for all parties involved. This allows developers to obtain an overall

• Anil P. Mathew is a MSc Computing Science student at the University of
Groningen, E-mail: a.palayiparambil.mathew@student.rug.nl

• Filipe A.R. Capela is a MSc Computing Science student at the University
of Groningen, E-mail: f.a.de.capela@student.rug.nl

Manuscript submitted on 23 March 2020. For information on how to obtain
this document, please contact Student Colloquium of FSE, University of
Groningen.

insight on which tool would be best suited for them based on the se-
lected software, programming language, and environment. Note that
in our paper, we will be restricting our analysis to tools that are able to
scan Java source code.

We combine past papers on the matter, and incorporate their re-
search with some research of our own, to answer two questions: What
are the differences between code smell detection tools in terms of their
benefits, limitations, and missing features? and How much is technical
debt impacted by code smells and how can these be reduced?

We start off in Section 2 where we present the definitions of code
smells, their categories, and the most reoccurring code smells in soft-
ware systems. In Section 3 an explanation of the workflow of the code
smell detection tools is presented, as well as an highlight on what are
the main differences among the selected tools. In Section 4, we will be
providing a brief overview of the concept of technical debt and what
this metric can provide to software developers, as well as how this met-
ric can be mitigated with the usage of code smell detection tools. In
Section 5 we present the three researches which serve as an inspiration
for our paper, by highlighting their most significant remarks regarding
the topic of code smell detection tools and how these are beneficial for
systems. Additionally, we provide our small contribution to the topic
by analyzing two code smell detection tools. To finish our paper, in
Section 6, conclusions are drawn which aim to answer the two ques-
tions presented before, and finally in Section 7 we debate on the future
work on this matter.

2 CODE SMELLS

Martin Fowler, in his book “Refactoring: improving the design of ex-
isting code” [2], has cataloged twenty-two symptoms in the code to be
used as indicators for harmful practices and implementations. Other
papers [3][4][5] reach a consensus that code smells are laborious to
detect, which deteriorates the software and makes it hard to maintain
in the long term. Combining all the observed attempts at defining code
smells mentioned above, we provide our definition of code smells as
being symptoms in the source code. Thus, indicating that there are
some issues with the architecting and programming standard followed
when developing the software. The presence of code smells does not
imply that the software will not compile or give the expected results.
Instead, quality attributes like performance, reliability, and maintain-
ability will be severely impacted, which results in poor code quality.

57

2.1 Categories
The twenty-two code smells that have been defined by Martin Fowler
can be classified into five different categories [2], with Figure 1 pro-
viding a high-level categorization of the code smells:

• Bloaters: Classes, methods, or code that has grown excessively
over a period, marking the system complex to manage. Typi-
cally, bloaters do not happen immediately but accumulate as the
codebase grows.

• Object-Oriented Abusers: This comprises of code smells in
which object-oriented programming principles are not applied to
code accurately.

• Change Preventers: Modifying code in one place will require
adjustments in other sections where the code is dependent, hence
making the development process laborious.

• Dispensables: This consists of code that is irrelevant, and its
exclusion makes the code more coherent.

• Couplers: Code structures that have high coupling between
classes and methods appear in this category of code smell.

Fig. 1. Code Smells Categories

2.2 Frequently occurring code smells
For this study, we decided to provide a high-level explanation of the
five most reoccurring code smells: God Class, Long Method, Dupli-
cate Code, Feature Envy, and Data Class [4]. These smells were se-
lected due to the following reasons: Commonly found in the analyzed
Open-source projects, recurrence in the systems from the analyzed
studies and its association with software degradation symptoms[6].
Here is a brief description of the selected code smells:

• God Class: A type of code smell in which classes tend to cen-
tralize the essential working of a system in one class. It does
much of its work by delegating more straightforward tasks to
other classes and consuming a considerable amount of data from
dependent classes. [7]

• Long Method: This type of smell is associated with methods
that have many lines of code. Therefore, impacting the readabil-
ity of the method. Programs prevail longer when the methods
are kept compact. This smell violates the “Single Responsibility
Principle” [8]. [Alternative name: God Method [9]]

• Duplicate Code: A duplicate code smell is a result of copy-
pasted code, and hence it requires modifications to all copies of
the code in case the logic needs adjustment. Furthermore, this
can finally result in inconsistency issues. [Alternative name :
Clones, Code clones [9]]

• Feature Envy: This smell describes the situation in which an
object gets the fields of another object in order to perform com-
putations, rather than asking the object to do the computations
itself. [10]

• Data class: These are classes that comprise fields and raw meth-
ods, which are accessed by other classes. These classes do
not offer any additional functionality and cannot operate au-
tonomously. [11]

3 CODE SMELL DETECTION TOOLS

Code smells can be detected manually when the application is trivial,
but when it grows in size and complexity some smells may go unno-
ticed. Hence, it would require an experienced user’s in-depth knowl-
edge of the system to detect these. In order to improve software and
prevent smells from propagating and impacting the entire system, it is
necessary to analyze it using the proper tools. These are referenced as
code smell detection tools, as their purpose is to scan the software and
detect potential code smells. There are countless tools available on-
line, they vary in the code smells they detect, their execution method
(plug-in or standalone), the supported programming languages, and
even in the names they define for specific code smells [4]. In our
analysis, we focus on analyzing the most used tools and making com-
parisons over which are the best regarding precision and recall.

Java has proven to be the programming language that has the most
detection tools available to analyze source code [4]. In order to keep
our analysis compact, we refine our analysis to tools that operate un-
der this constraint. The next step was to analyze the list of code smell
detection tools found in [4] and understand if these are still operational
or relevant. Additionally, we added more code smell detection tools,
which were gathered from our own experience - jSparrow [12], Sonar-
Qube [13] and SpotBugs [14]. The result of this analysis gives us a
refined list of code smell detection tools found in Figure 2.

Fig. 2. List of Code Smell Detection Tools

An Analysis on Code Smell Detection Tools – Anil P. Mathew and Filipe A. R. Capela

58

3.1 Tools Workflow
The tools which are mentioned in Figure 2 operate using a workflow
that can be seen in Figure 3. This process commences when the tools
scan the source code or the compiled byte code. Then detection strate-
gies are applied to it, and finally, it outputs the detected code smells.
The detection strategies are what differs between the tools and can be
based on metrics, trees, textual analysis, program dependence graphs
or token analysis [4].

Source Code

Compiling
Java Compiler

Compiled Byte Code

Detected Bad SmellsSmell Detector Tool/
Technique

Bad Smell
Specifications

Bad Smell Inventory

Software Metrics

Software Smell Detection Tool Output

Fig. 3. Detection Process of Tools

3.2 Main differences
Different tools look for different code smells. With this paper we will
demonstrate that the tools which were gathered during the refinement
process shown previously in Figure 2 have different code smells repos-
itories. Based on the analyzed studies performed in [4][5], we created
a comparison of the different tools which is depicted in Figure 4. The
aim of this comparison was to identify the code smells detected by
each tool, the employed technique, and whether the tool is a plug-in
or not. In this comparison it is shown that most of the tools employ a
detection technique based on AST1. It is also noticed that the majority
of the tools are offered as standalone applications. An important fact
is that more than half of the tools look for the “Duplicated Code” and
“Large Class” code smells. This corroborates the statements made in
Section 2.2, where we claim that these are some of the most frequent
smells detected in software.

Fig. 4. Comparison of the tools

1https://www.techopedia.com/definition/22431/abstract-syntax-tree-ast

4 TECHNICAL DEBT

Technical debt is defined as a measurement of how much software
needs refactoring. The first attempt at defining it was in 1992, on a
paper by Ward Cunningham [15], where he describes technical debt
as when software development compromises in maintainability to in-
crease short term productivity. In Figure 5 it is possible to see the
reasons for high technical debt in a system. When there is pressure
to increase productivity, technical debt increases, leading to reduced
software quality and motivation. Technical debt has no defined unit,
varying depending on the tool which provides this measurement, ei-
ther outputting cost, time, or Lines of Code (LOC). This metric incor-
porates code smells to provide an overview of the software state and
provides developers insightful information on where the majority of
problems lie in the system. It also provides an estimate of how many
resources will need to be consumed in order to patch the existing is-
sues.

Different components are used by tools in order to compute the val-
ues for technical debt. These range from Code Smells, High Complex-
ity of components, Bugs, Improper style of coding, Increased loading
times, Performance issues as well as Software age.

Fig. 5. Technical Debt Lifecycle [16]

4.1 Impact on Software

High technical debt indicates that the software contains problems re-
garding maintainability and performance. Factors like accumulated
debt, type of debt, and the team involved in the development will im-
pact the software’s capability to have new features, since it will be
difficult for developers to comprehend the source code.

As mentioned in the introductory section, trillions of dollars are put
into refactoring. From an enterprise point of view, it is easier to spend
these resources on refactoring an old system, than making the decision
to shift to a brand new one. This decision is taken because starting
from scratch has a substantial effort associated with it. It is impossible
to quantify how many hours have been put into fixing and refactor-
ing systems, but if these were to be developed correctly in the first
place, most of that time could have been employed into developing
new features, new systems, and overall creating better programming
environments.

The reason why technical debt occurs so much in systems comes
from the fact that developers are always under strict deadlines. This
forces developers to opt for shortcuts as they tend to follow bad coding
practices, and hence degrading the performance of the systems. With
this, if the software is created inefficiently, then it will impact build
time, as it contains too many lines of code. One phenomenon that can
occur is the famous “spaghetti code”2, which makes code comprehen-
sion difficult. This damages the productivity of the teams, which can
consequently lead to some frustration, creating a snowball effect that
can lead to software reaching the end of their lifecycle.

4.2 How to cope with Technical Debt

As most companies are aware of the concept of technical debt, it
should be of their interest to find ways to mitigate it so that it does
not lead to the worst-case scenario, company closedown. In Figure 6

2https://sourcemaking.com/antipatterns/spaghetti-code

SC@RUG 2020 proceedings

59

it is possible to understand how technical debt can be managed during
the course of the system’s lifecycle.

In our opinion, the most important thing companies should aim at
is to have small iterations, where after each one of them, a specialized
team would intervene and refactor the smelly code, managing the sys-
tem’s technical debt. Another way to decrease technical debt is for the
software to be accessible to the Open-source community, hence im-
proving based on the input from independent developers, reducing the
burden of the DevOps 3 teams in fixing issues.

As mentioned, we believe that if developers stick to good coding
practices in the first place, the debt is much more manageable, and
not a lot of effort needs to be put into refactoring and analyzing the
source code. Unfortunately, this is near impossible since it is tough
to make code which is understandable while following time-sensitive
deadlines.

Fig. 6. Technical Debt Roadmap [17]

4.3 Code Smell Detection Tools effect on Technical Debt
Technical debt can be drastically reduced if tackled at the right time.
The first place where technical debt arises is during the development
phase, where code is involved. It is possible to see from Figure 7, the
later the smells are detected, the harder it will be to mitigate technical
debt, since the complexity of this task increases linearly or even expo-
nentially. Code smell detection tools play a crucial role when it comes
to reducing this technical debt. If applied during the “Code” stage,
the costs for refactoring will become lesser than when compared to
phases such as “Architecture”, “Process”, “Organization” and “Final
Product”.

C
O

D
E

A
R

C
H

IT
EC

TU
R

E

PR
O

C
ES

S

O
R

G
A

N
IZ

AT
IO

N

FI
N

A
L

PR
O

D
U

C
T

COMPLEXITY

Fig. 7. Technical Debt accumulation over iterations [18]

3https://www.atlassian.com/devops

5 DISCUSSION

As stated in the introduction, software correctness has been researched
by various developers, right from the origin of software development.
Our study will be based on three different studies, which focus on the
following issues:

• Indexes of technical debt [3] (Section 5.1).

• Comparative studies on several code smell detection tools [4] [5]
(Sections 5.2 and 5.3, respectively).

The first study [3] focuses on describing how the technical debt of
a software is calculated, using five different tools, CAST, inFusion,
SonarGraph, SonarQube, and Structure101. The other two studies [4]
[5] focus directly on using different code smell detection tools and un-
derstanding which of them are the most suitable for different contexts
of analysis. We intend to analyze the approaches mentioned above and
provide our insights based on our experience with using code smell de-
tection tools and combining it with the outcome of these studies.

5.1 Technical Debt indexes provided by tools [3]
Francesca Fontana et al. (2016) discussed different tools which intend
to provide the users with a measurement of the technical debt of their
systems. This study is not a hands-on experiment, but rather it grasps
the theory behind how the tools obtain their results for technical debt.
They analyze different tools, but we will be focusing on how issues
with code impact technical debt.

• Five tools are introduced, CAST (CAST), inFusion (IF), Sonar-
Graph (SG), SonarQube (SQ), and Structure101 (S101).

• This study presents the formulas each of the tools utilize to dis-
play technical debt, and shows how each tool uses different in-
dexes to calculate it.

• The main difference between the tools reside on which informa-
tion they utilize to calculate the technical debt, as seen in Fig-
ure 8, where it is possible to see that these may utilize “Code
Smells”, “Code Metrics” and “Coding Rule Violations”.

• The index provided by each tool is presented in Figure 9, where
Technical Debt Index is represented by the acronym TDI. Here
it is possible to see whether the tools provide the resolution costs
and the keeping costs, as well as displaying which unit of mea-
surement they output for technical debt.

• An example is CAST, which uses TDP (Technical Depth-
Principal) while SonarGraph, uses not one but rather two in-
dexes: SDI (Structural Debt Index) and SDC (Structural Debt
Cost).

• SonarQube seems to be the tool that uses the most information
regarding code problems, making it the most reliable tool. Other
results indicate that CAST and SonarGraph opts for using cost
(US$) as their unit for measuring a system’s technical debt. On
the other hand, tools either use Time, Rank, or LOC to indicate
how much effort needs to be put into the software to fix it.

Fig. 8. Input information used by tools [3]

An Analysis on Code Smell Detection Tools – Anil P. Mathew and Filipe A. R. Capela

60

Fig. 9. Output of the indexes provided by the tools [3]

5.2 A comparative study of bad smell detection tools [4]
Eduardo Fernandes et al. (2016) did a thorough study where they com-
pare eighty-four bad smell detection tools. This list was then refined
based on the availability of the tools and a small portion of these was
used to analyze two different projects: JUnit and MobileMedia.

• The paper used a reference list containing code smells detected
manually, which were provided as part of a study to compare
these results with the output of the detection tools. This reference
list was only made for MobileMedia software, as this was created
as part of a research project.

• Since some tools do not detect the same smells, this study chose
only to analyze Large Class and Long Method.

• The results obtained demonstrated that, when comparing these
tools to the actual smells in the source code, some tools got better
scores for precision and recall than others, as seen in Figure 10.

• PMD scored 100% on precision and had the best results for recall
out of the four detection tools analyzed. Tools such as inFusion
(deprecated) and JSpIRIT (deprecated) scored well in these cri-
teria, with inFusion also standing out with values of 100% for
precision, but scoring lower on the recall of both smells. On the
downside, JDeodorant, which is a tool that is still around, scored
very low on both precision and recall, drastically reducing its
reliability.

Fig. 10. Results for Precision and Recall [4]

5.3 An experience report on using code smells detection
tools [5]

Francesca Fontana et al. (2011) experimented to understand which
tools would be most fit for improving software correctness. This study
analyzed six different tools used for scanning source code written in
the Java programming language.

• This experiment used the GanttProject source code in order to ex-
tract its conclusions, applying all six tools to detect code smells.

• One remark is that this paper analyzed five different versions of
the software, to understand how the number of code smells in-
creased throughout its development, consequently affecting its
complexity.

• This paper used eight code smells, ranging from God Class (Sec-
tion 2.2), Long Method (Section 2.2), and more. The procedure
involved scanning the GanttProject with all the tools and display
the number of occurrences of each code smell per tool.

• The results displayed are inconclusive to determine which is the
best tool. However, it is possible to understand how each of the
tools operates for each code smell, compared to others.

• An example of this is the Feature Envy smell which can be seen
in Figure 11; Stench Blossom detected 64 occurrences, while
iPlasma, inFusion, and JDeodorant detected 42, 8, and 2, respec-
tively, for the last analyzed version of GanttProject.

• Since there is no reference table with the correct values of the
number of occurrences of the code smells (usually done manu-
ally by a panel of certified analysts), it is hard to say which of the
tools is more reliable, since it is hard to quantify the occurrence
of false positives, which is an indicator of the precision and recall
of a tool.

Fig. 11. Results for Feature Envy smell on different tools [5]

5.4 Our insight on Code Smell Detection Tools
We analyzed the tools mentioned in the analyzed studies and decided
to acquire some data regarding some up-to-date tools. We were able
to identify new tools that were not covered by such papers. Two of
the tools that were introduced by the group on the table in Figure 2,
SonarQube, and SpotBugs will be the focus of analysis.

SonarQube is a complete tool since it presents the users with a list
of existing code smells, as well as a metric for visualizing the Tech-
nical Debt of the scanned system. This software is widely used in the
Open-source community, as it provides the analytics to the developers,
as well as to the users. This way, they can see where bugs are present
and help to correct them. This tool provides metrics for Technical
Debt in the form of Time, which allows software development teams
to understand where most of the debt is focused and fix it right away.
SonarQube is, therefore, an iterative tool, which means that once it
is deployed, it will keep tracking the software changes and continu-
ously post the developers the state of the Technical Debt, making it an
excellent option for companies to utilize.

A tool that was not discussed in any of the analyzed papers was
SpotBugs, a tool that was released in 2006, under the name FindBugs,
as a research project from the University of Maryland. It has since
grown to become one of the most reliable tools in the community.
SpotBugs is used as a plug-in or as a standalone GUI that pinpoints
the locations of the code smells, allowing for an easier refactoring of
the code, hence improving the time it takes to reduce the Technical
Debt.

6 CONCLUSION

In this paper, we have covered the notion of code smells, code smell
detection tools, and technical debt. Later, we combined these notions
in such a way that it is clear that by using code smell detection tools to
fix code smells, companies can reduce their software’s technical debt.

The first question we tried to respond to was: “What are the dif-
ferences between code smell detection tools in terms of their benefits,
limitations, and missing features?”. We responded by presenting re-
sults from several papers, which analyze various tools and extrapolate
their best points, as well as their weak points. Different tools will only
apply to specific criteria, like the programming language or whether a
developer wishes to test the occurrence of a specific code smell. One
remark which corroborates the statement above is the fact that it is
tough to conclude whether a tool is better than another just by testing
it on a limited software. This happens since these do not represent a
significant part of the population, which makes it impossible to gener-
alize. Despite not being able to come up with the most suited tool, it
is safe to say that some offer more support than others, like the case of
SonarQube, which is a tool which offers a vast number of metrics and
can be used to analyze an extensive list of programming languages,

SC@RUG 2020 proceedings

61

as well as providing CI/CD (Continuous Integration and Continuous
Deployment).

The second question tackled in this paper is: “How much is techni-
cal debt impacted by code smells and how can these be reduced?”. As
mentioned in Section 4, to calculate technical debt, code smells play
a significant role. With the existence of code smells, it is tough for
a system to withstand continuous change. To reduce technical debt,
code smells are an aspect that needs urgent fixing. To do so, we have
mentioned already in the first question that code smell detection tools
are vital in this aspect, allowing for developers to employ the time be-
fore the system is deployed to the customers into using such tools and
refactoring the code. However, this is not the only way the issue of
high technical debt can be tackled. As discussed in Section 5.1, we
analyzed tools that measure technical debt in the systems. These act
as a secondary line of defense for developers to refactor systems. It
is hard to draw conclusion on which is the most reliable tool to mea-
sure technical debt, as these do not follow a standardized protocol to
measure it. Starting by how different tools give different units of mea-
sure, this already restricts software companies from using some tools
while disregarding others. If they, for example, seek to obtain a time
estimate over money, they might opt for SonarQube instead of Sonar-
Graph/CAST. Therefore, depending on the desired output, some tools
will be better options. One reliable option which we were able to un-
derstand from the studies is the SonarQube tool, which uses the most
information to calculate the technical debt, allowing for a complete
analysis of this metric.

An additional conclusion we were able to extract from this study is
that code smell detection tools have the power to maintain software on
a low debt when applied at the right time. If this is achieved, it allows
for the software to progress over time, with its main effort being put
into creating new features and optimizing it, instead of wasting time
fixing problems that should have been detected at earlier stages.

7 FUTURE WORK

In the future, a recommendation would be for code smell detection
tools to aim to reach a unified definition of each code smell. This
way there would be no problem with different tools detecting different
code smells for the same portions of code. An example is shown in
Section 2.2 where the “Duplicate Code” smell has other names such
as “Clones” or “Code Clones”.

Since there is a wide range of domains (such as consumer goods,
financial and telecommunications) for which software is developed,
these can be distinguished by their coding standards, programming
languages and platforms. This variability makes it challenging for
developers to choose the best code smell detection tools to suit their
requirements. So, as future work, researchers need to perform experi-
ments on multiple software belonging to different domains to get some
potential benchmark that would assist software developers in making
a more viable choice on selecting the appropriate code smell detec-
tion tool. With this data of the code smell detection tools performance
based on the domains, the developers’ time/effort would be reduced
drastically as their preferences are rational for the field that they plan
to develop.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. R. Smedinga, Prof. M. Biehl and our
supervisor Jie Tan for giving us the required guidance in writing this
paper.

REFERENCES

[1] H. Krasner, “The cost of poor quality software in the us: A 2018 report,”
Consortium for IT Software Quality, Tech. Rep., 2018.

[2] M. Fowler, Refactoring: improving the design of existing code. Addison-
Wesley Professional, 2018.

[3] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical debt indexes pro-
vided by tools: A preliminary discussion,” in 2016 IEEE 8th Interna-
tional Workshop on Managing Technical Debt (MTD). IEEE, 2016, pp.
28–31.

[4] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A review-
based comparative study of bad smell detection tools,” in Proceedings
of the 20th International Conference on Evaluation and Assessment in
Software Engineering, 2016, pp. 1–12.

[5] F. A. Fontana, E. Mariani, A. Mornioli, R. Sormani, and A. Tonello, “An
experience report on using code smells detection tools,” in 2011 IEEE
fourth international conference on software testing, verification and val-
idation workshops. IEEE, 2011, pp. 450–457.

[6] R. Oliveira, L. Sousa, R. de Mello, N. Valentim, A. Lopes, T. Conte,
A. Garcia, E. Oliveira, and C. Lucena, “Collaborative identification of
code smells: A multi-case study,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). IEEE, 2017, pp. 33–42.

[7] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Guéhéneuc, “Tracking de-
sign smells: Lessons from a study of god classes,” in 2009 16th Working
Conference on Reverse Engineering. IEEE, 2009, pp. 145–154.

[8] “Single responsibility principle,” Feb 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Single responsibility principle

[9] A. S. Cairo, G. d. F. Carneiro, and M. P. Monteiro, “The impact of code
smells on software bugs: A systematic literature review,” Information,
vol. 9, no. 11, p. 273, 2018.

[10] G. 4, jhewlettjhewlett 2, and R. . bronze badges, “What is a” feature envy”
code and why is it considered a code smell?” Aug 1963. [Online]. Avail-
able: https://softwareengineering.stackexchange.com/questions/212128/
what-is-a-feature-envy-code-and-why-is-it-considered-a-code-smell

[11] G. Dhaka and P. Singh, “An empirical investigation into code smell elimi-
nation sequences for energy efficient software,” in 2016 23rd Asia-Pacific
Software Engineering Conference (APSEC). IEEE, 2016, pp. 349–352.

[12] “Automatic java refactoring - fits in every infrastructure!” [Online].
Available: https://jsparrow.eu/

[13] “Your teammate for code quality and security.” [Online]. Available:
https://www.sonarqube.org/

[14] “Spotbugs.” [Online]. Available: https://spotbugs.github.io/
[15] W. Cunningham, “The wycash portfolio management system,” SIGPLAN

OOPS Mess., vol. 4, no. 2, p. 29–30, Dec. 1992. [Online]. Available:
https://doi.org/10.1145/157710.157715

[16] T. Sharma, “Four strategies for managing technical debt,” Aug
2018. [Online]. Available: http://www.designsmells.com/articles/
four-strategies-for-managing-technical-debt/

[17] C. Oliveira, “Think legacy modernization is a one-time event? think
again!” Jul 2017. [Online]. Available: https://www.morphis-insights.
com/technical-debt/

[18] “How to fight technical debt,” Aug 2019. [Online]. Available:
https://briisk.co/blog/how-to-fight-technical-debt/

[19] X. Liu and C. Zhang, “Dt: a detection tool to automatically detect code
smell in software project,” in 2016 4th International Conference on Ma-
chinery, Materials and Information Technology Applications. Atlantis
Press, 2017.

[20] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic detection of bad
smells in code: An experimental assessment.” Journal of Object Technol-
ogy, vol. 11, no. 2, pp. 5–1, 2012.

[21] T. Sharma, M. Fragkoulis, and D. Spinellis, “House of cards: code smells
in open-source c# repositories,” in 2017 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM).
IEEE, 2017, pp. 424–429.

[22] A. Kaur and G. Dhiman, “A review on search-based tools and tech-
niques to identify bad code smells in object-oriented systems,” in Har-
mony search and nature inspired optimization algorithms. Springer,
2019, pp. 909–921.

[23] J. Padilha, J. Pereira, E. Figueiredo, J. Almeida, A. Garcia, and
C. Sant’Anna, “On the effectiveness of concern metrics to detect code
smells: An empirical study,” in International Conference on Advanced
Information Systems Engineering. Springer, 2014, pp. 656–671.

[24] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Castor Filho et al., “Evolving
software product lines with aspects,” in 2008 ACM/IEEE 30th Interna-
tional Conference on Software Engineering. IEEE, 2008, pp. 261–270.

[25] A. Yamashita and L. Moonen, “Do developers care about code smells?
an exploratory survey,” in 2013 20th Working Conference on Reverse En-
gineering (WCRE). IEEE, 2013, pp. 242–251.

[26] L. Hochstein and M. Lindvall, “Combating architectural degeneration: a
survey,” Information and Software Technology, vol. 47, no. 10, pp. 643–
656, 2005.

An Analysis on Code Smell Detection Tools – Anil P. Mathew and Filipe A. R. Capela

62

Implementing Compositional Concurrency in Haskell

Deepshi Garg, Student, University of Groningen

Abstract—In times of large and complex computations, it is often desired to split the program into smaller chunks, which can be
run concurrently. If a program is single threaded, CPU might end up spending a lot of idle time during I/O, memory reads, etc. With
concurrent processing, this idle time can be allotted to some other process. This saves time and increases efficiency. However, if these
processes communicate or are interdependent, designing them becomes difficult. This paper aims to provide easy implementation
of concurrent operations in Haskell. We give detailed practical executions of the ability to split the program into parallely executing
processes, use of mutable variables, transactional variables, and software transactional memory. We also provide use-case specific
extensions of these features like consumer-producer message passing mechanism, buffered channels, choice, blocking and non-
blocking processes, et al. Further, we make an attempt to compare them with the conventional concurrency mechanisms like locks.

Index Terms—Concurrency, Transactional Memory, Locks, Synchronisation, Atomicity

1 INTRODUCTION

Parallelism is about breaking a program into sub-tasks which can be
run parallely in different computation units, without any internal inter-
action. However, concurrency is about breaking a program into sub-
tasks which access the same resources. Concurrency leads to multiple
processes running simultaneously and possibly reading and updating
the same resources. This can lead to non-determinism. Such programs
are often difficult to write, and their behaviour is difficult to predict
and test. One thing we can do is make them as much modular as pos-
sible. Preserving this compositionality of a program will at least help
us to avoid obvious mistakes by restricting modules from sharing their
core logic and interacting only via designated interfaces. This paper
makes an effort to put in feasible implementations of the tools of com-
positional concurrency in Haskell. Specifically :

• We show how the main process can be split up into multiple pro-
cesses, thus providing with the ability to desing concurrent pro-
grams (Section 2.1)

• We walk through the implementation of mutable variables. This
would help us design programs which share resources. This is
further extended to give examples of useful abstractions which
can be readily built over these mutable variables (Section 3)

• To be able to write atomic transactions and preserve composi-
tionality in programs, we explain the concept of Software Trans-
actional Memory and use transactional variables for a simple
implementation of the same. We further extend this to explore
blocking and choice mechanisms. (Section 4)

• We go through the benefits of Transactional Memory over other
available concurrency mechanisms like locks (Section 5)

This paper is not about emphasising the need of concurrency and
validating its benefits. Rather, it is about delving into a viable prac-
tice of the readily available tools of concurrency in Haskell, and make
the programmer more comfortable with their use. The main aim is to
give the programmer more control over concurrent systems via explic-
itly visible syntax. We also talk about preserving the compositionality
of the program, while making it concurrent. In Layman’s terms, we
emphasize on letting the programmers control the atomicity and the

• Deepshi Garg is with University of Groningen doing Masters in Computing
Science - Software Engineering and Distributed Systems, Student Number:
S4199456, E-mail: d.garg@student.rug.nl.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org .

blocking behaviour in their concurrent systems, while respecting the
abstraction barriers among different modules [3].

2 STARTING WITH BASICS

Haskell is a pure, lazy, functional programming language created in
the late 1980s by a committee of academics [7]. Explaining the three
key terms mentioned here :

• Pure : Everything is immutable. Variables cannot be reassigned.
A function gives same output every time it is invoked with the
same set of arguments

• Lazy : Expressions are not evaluated beforehand. Rather, evalu-
ations are done only when the result is actually needed

• Functional : Functions are first-class, i.e., they can be used like
any other value in the program

With the above key terms in mind, let us write a simple Haskell pro-
gram which runs a loop to print a character infinitely on the standard
output screen.

1. loop :: Char -> IO ()
2. -- loop to print a character infinitely
3. loop ch = putChar ch >> loop ch

4. main :: IO ()
5. main = loop 'z'

Explaining this program for Haskell beginners :

1. It is a prototype of the function loop, which takes in a character
as input and returns a value of type action IO (). This indicates
that the function loopmay have side effects, like printing output
on the console. However, ()means a unit value, similar to void
in C language.

2. Anything which starts with -- becomes a comment

3. It is the function definition. The function loop takes an in-
put character ch. This ch is passed to the function putChar,
which prints it to the stdout and the function loop is invoked
again with the same argument. Yes! It is a recursive function.
The operator >> is an infix combinator which combines one ac-
tion to another without caring about the output from the previ-
ous action. Note that a function call in Haskell is written by
function-name arg1 arg2 ...

4. Prototype of main function which accepts no argument and re-
turns IO (). It may leave some side effects like printing on
console, altering a memory location, et al.

63

5. We simply define the main function as a call to the loop func-
tion with argument z

When we run the program, main function, i.e., Line 4 is invoked.
This program will print the character z infinite times on the

stdout.

2.1 Processes

In the above example, our program runs in a single process. Say,
if this process was to get stuck for some reason, it will hold up the
execution of the whole program. For instance, we wish to run two
loops in parallel now, such that the first loop prints a new-line
character after every 500 milliseconds, and the second loop keeps
on printing the character z continuously, like before. To do this, we
need a mechanism to split the main process into two independent
sub-processes. This enables the second loop to not get stuck while
the first loop goes into a wait state for 500 milliseconds. Concurrent
Haskell [5] provides the primitive forkIO which can be used to
spawn a child process from the main parent process.

forkIO :: IO () -> IO ()

forkIO is a function, which takes an action IO () as an input
argument, and spawns a concurrent process to perform this action. The
side effects of this action are interleaved with the side effects of all the
other processes running concurrently.

import Control.Concurrent

loop :: Char -> IO ()
-- loop to print a character infinitely
loop ch = putChar ch >> loop ch

loopWithDelay :: Char -> IO ()
-- loop to print a character after
-- a delay of 500 milliseconds
loopWithDelay ch = do { threadDelay 50000

; putChar ch
; loopWithDelay ch}

main :: IO ()
main = forkIO (loopWithDelay '\n') >>

loop 'z'

Talking about new additions in the program :

• First line imports the package Control.Concurrent to pro-
vide namespaces for the functions threadDelay and forkIO

• We define the function loopWithDelay. The symbol do
constructs an action by performing the smaller actions in se-
quence. The function threadDelay :: Int -> IO ()
suspends the current process for the given number of microsec-
onds.

• In the main function, we first call the function forkIO to
spawn a new process for the first loop, i.e., loopWithDelay.
The function loop becomes a part of the parent process.

forkIO has certain important properties :

• Because Haskell follows lazy evaluations, we can face examples
of duplicate and stale evaluations. For instance, a newly spawned
process might try to run an evaluation, which is already being
run by another process. In such a case, the two processes should
communicate, and the former should wait till the latter is done.
Thus, forkIO needs inter-process synchronization with utmost
superiority.

• Since concurrently running processes can be mutating the same
resource, non-determinism is inevitable. Like in the above ex-
ample, it is not possible to state as to how many z will be printed
before each new-line

• The forked process is untraceable from the parent process. Thus,
it is impossible to kill it or wait for its termination.

• forkIO is asymmetrical, i.e., forked process is the child pro-
cess, while the other is the parent process. If the parent process
terminates, child process will be terminated as well.

3 MUTABLE VARIABLES

While lazily implemented forkIO gives us an ability to spawn
multiple concurrent processes and provides an efficient way to
synchronise among them, it still leaves out some important issues.
There might be a case when processes demand exclusive access to
resources. Sometimes we need explicit inter-process communications,
like when one process waits for a signal from another process to
do it’s own job, or a simple producer-consumer message passing
model. Concurrent Haskell [5] presents an elegant solution for this.
Taking into account the work on mutable state [6], I-Structures [2]
and M-Structures [1]; it introduces us to a new primitive type MVar:

type MVar a

A variable of type MVar a, either holds a value of some data
type a, or is empty. It provides a means for information sharing
among concurrent processes. It acts as a buffer variable in which a
process can write into, while another one can read from. It exposes
the following interface:

newMVar :: IO (MVar a)
takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO()

Here,

1. newMVar creates and returns a new MVar of type a.

2. takeMVar reads and returns the value stored in the given MVar,
leaving it empty. If the given MVar is already empty, it blocks
till it becomes non-empty.

3. putMVar writes the given value to the given MVar. It blocks if
the given MVar is non-empty.

Explaining this through an example, let us consider the following
program. Here, two processes run concurrently. The first process reads
a character from stdin, sleeps for 2 seconds and then writes this
character to a shared MVar. The second process reads the value of
this MVar and prints it to stdout.

1. import Control.Concurrent
2.
3. main :: IO ()
4. main = getChar >>= \c ->
5. do { mVar <- newEmptyMVar
6. ; forkIO (do { m <- takeMVar mVar
7. ; print m})
8. ; threadDelay 2000000
9. ; putMVar mVar c}

• getChar :: IO Char reads a character from stdin and
returns it.

• >>= is an infix operator which combines two actions such that it
passes on the output of the first action to the second.

• c -> E for some expression E denotes a lambda expression,
whose scope extends as far to the right as possible.

Implementing Compositional Concurrency in Haskell – Deepshi Garg

64

One important thing to note here is that the second process here
will wait till the the value of mVar becomes non-empty, i.e., for 2
seconds.

The type MVar can be extended to fit in multiple use-cases of
concurrency. As explained in the above example, it can be used as
a shared memory location, which allows multiple processes to ex-
change information. It can also be used as binary semaphores with
signal and wait operations being implemented using takeMVar
and putMVar. With some abstractions, it can also be used as message
passing channels between a set of producer and consumer processes.
Let us have a look at some of these implementations.

3.1 Producer/Consumer Buffer Channel
We often come across situations where a producer process needs to
pass on some message to a consumer process. MVar can be suitably
used for this as described in the previous example. Only issue is that
of acknowledgement from consumer to producer about successful
message consumption. As suggested in [5], this can be easily resolved
using the following abstraction :

type CVar a = (MVar a, MVar ())

Say CVar be the channel variable. It composes of two MVars.

1. First is the dataVar : Used to pass on data from Producer to
Consumer. This data can be of any type a.

2. Second is the ackVar : Used to pass acknowledgement for suc-
cessful message consumption from consumer to producer. Since
acknowledgment is only a notification event and does not contain
any information for now, it is safely assumed to be of unit type
().

The following interface can be used :

newCVar :: IO (CVar a)
putCVar :: CVar a -> a -> IO ()
takeCVar :: CVar a -> IO a

• newCVar : Creates and returns a new channel variable.

• putCVar : Takes a channel variable CVar and a data variable
a. It waits for the acknowledgement of successful consumption
of the last message from the consumer before putting new data.

• takeCVar : Takes a channel variable CVar. It reads the mes-
sage data a from it, publishes the acknowledgment for successful
consumption, and returns the value a.

Putting the whole program together in executable form :

import Control.Concurrent

-- dataVar : Producer -> consumer
-- ackVar : Consumer -> producer
type CVar a = (MVar a, MVar ())

newCVar :: IO (CVar a)
newCVar = newEmptyMVar >>= \dataVar ->

newEmptyMVar >>= \ackVar ->
putMVar ackVar () >>
return (dataVar, ackVar)

putCVar :: CVar a -> a -> IO ()
putCVar (dataVar, ackVar) val =

print "consumed ackVar" >>
takeMVar ackVar >>
print "publishing dataVar" >>
putMVar dataVar val

takeCVar :: CVar a -> IO a
takeCVar (dataVar, ackVar) =

print "consumed dataVar" >>
takeMVar dataVar >>= \val ->

print "publishing ackVar" >>
putMVar ackVar () >>
return val

main = getChar >>= \c ->
do { cVar <- newCVar

; forkIO (do { threadDelay 2000000
; val <- takeCVar cVar
; print val}) >>

putCVar cVar 'f' >>
print ("produced first value - ", "f") >>
putCVar cVar c >>
print ("produced second value - ", c)}

Understanding the flow here :

• First, the program takes an input character c

• Then, it creates a new channel variable cVar

• Then, it spawns a child process, which first sleeps for 2 seconds,
and then consumes data from the shared channel variable cVar

• While the child process is at work, the parent process first pro-
duces a character f in the channel, and then attempts to produce
the given input character c to the same channel.

However, note that, for the producer to be able to produce the second
value to the channel, it has to wait for the consumer to consume the
first value and publish an acknowledgment. This is clearly visible by
the print statements put in place. In this program, given some input
character k, the following output is received :

"consumed ackVar"
"publishing dataVar"
("produced first value - ","f")
"consumed ackVar"
"consumed dataVar"
"publishing ackVar"
'f'
"publishing dataVar"
("produced second value - ",'k')

3.2 Channel with a infinite buffer stream
The limitation in the previous example is that it can handle only one
message at a time. Concurrent Haskell [5] also suggests an abstraction
where we use MVar to derive a channel variable which can handle
multiple messages at once. Somethings to note here :

• It follows the First In First Out data rule for reading and writing
data. One can say it is very similar to Queue in conventional
object oriented languages. Read and write operations happen at
opposite ends of the channel.

• We do not have the mechanism for acknowledgment anymore. It
is not needed because producer can now produce as many mes-
sages as it wants without caring about consumption.

Defining the channel type,

type Channel a = (MVar (Stream a), MVar
(Stream a))
type Stream a = MVar (Item a)
data Item a = Item a (Stream a)

• Channel consists of 2 MVars, one to point to the reading end,
other for the writing end.

SC@RUG 2020 proceedings

65

• Stream consists of the item to be held in the channel.

• Item is a pair of 2 values : the first element of the stream, and
the rest of the stream.

• a is the type of data this channel is designed to hold

It can be compared with the doubly linked lists in object oriented
programming, where

• reading MVar is the read pointer, from where the consumer re-
trieves data

• writing MVar is the write pointer, from where the producer
writes data

• Item is a linked list node, which holds the current node data
value, as well as the pointer to the next node or we can say the
rest of the list

It will expose the following interface :

newChannel :: IO (Channel a)
putChannel :: Channel a -> a -> IO()
getChannel :: Channel a -> IO a

• newChannel creates and returns a new channel for type a

• putChannel creates a new MVar with value a, and updates
the write-MVar of the channel to contain this new item. It
also updates the old stream to have the new item

• getChannel reads the value in the first item of the stream in
read-MVar, makes the read-MVar point to next item, and
return the value of the first item

Looking at the complete implementation:

import Control.Concurrent

-- it is like double-linked list :
-- readVar -> start pointer,
-- writeVar -> end pointer,
-- stream -> list of items,
-- item -> (head, rest of the list)
type Channel a = (MVar (Stream a),

MVar (Stream a))
type Stream a = MVar (Item a)
data Item a = Item a (Stream a)

newChannel :: IO (Channel a)
newChannel = newEmptyMVar >>= \read ->

newEmptyMVar >>= \write ->
newEmptyMVar >>= \emptyStream ->

putMVar read emptyStream >>
putMVar write emptyStream >>
return (read,write)

putChannel :: Channel a -> a -> IO()
putChannel (read,write) val =

newEmptyMVar >>= \newItem ->
takeMVar write >>= \oldStream ->

putMVar write newItem >>
putMVar oldStream (Item val newItem)

getChannel :: Channel a -> IO a
getChannel (read,write) =

takeMVar read >>= \head ->
takeMVar head >>= \(Item val restStream) ->

putMVar read restStream >>

return val

main = getChar >>= \c ->
do { channel <- newChannel

; forkIO (
do {
threadDelay 2000000

; val <- getChannel channel
; print ("value read in fork", val)}) >>
putChannel channel 'f' >>
print "put first value - 'f'" >>
putChannel channel c >>
print ("put second value - ", c) >>
do {
threadDelay 3000000
; val <- getChannel channel
; print ("value left in channel", val)}}

Here, understanding the flow :

1. A character c is taken as input

2. A channel is created

3. A child process is forked. It first sleeps for 2 seconds, and then
reads a value from the channel

4. First character f and then the input character c is written to the
channel

5. Parent process sleeps for 3 seconds and then reads the value from
the channel.

Again, the print statements help us in understanding the program
flow. Given the input k, following output is generated :

"put first value - 'f'"
("put second value - ",'k')
("value read in fork",'f')
("value left in channel",'k')

Note that values are written to the channel regardless of whether
they are consumed or not.

4 SOFTWARE TRANSACTIONAL MEMORY

Now consider the case when multiple shared resources need to be ac-
cessed in a way that the intermediate stage should not be visible to
any other process, or a scenario where multiple processes access the
same shared resource. For instance, transfer function for a bank
account. First, it needs to subtract the amount from the sender ac-
count, and then add it to the receiver account. Both of the accounts
would be shared resources here, because multiple such transfers hap-
pen in a bank. In this scenario, we need to pitch in the idea of making
both these steps into a transaction. As stated in [3], the key idea of a
transaction is that a block of code, including nested calls, can be en-
closed by an atomic block, with the guarantee that it runs atomically
with respect to every other atomic block.

Transactions can be implemented using optimistic execution.
Here, when an atomic transaction is to be performed, a transaction
log is created. The idea being that, whenever a shared transactional
variable is updated, instead of updating it actually, an entry in the
transaction log is created. It has the variable’s address and the new
value. Similarly, when a read operation is to be performed within the
transaction, first the log is searched for an updated value. If no entry is
found, the actual variable is read and recorded in the log. Once all the
steps of the transaction are done, final changes are committed to the
actual variable. There might be multiple threads accessing the same
variables, and one of them might end up updating the variable while
our transaction is still running. So, before committing the transaction,
a validation happens, where the initially recorded value of the variable
is matched with the current value. If they do not match, transaction

Implementing Compositional Concurrency in Haskell – Deepshi Garg

66

log is discarded and the transaction is performed again.

In Haskell, we have STM. It is a monad, just like IO. The difference
is that within a STM block, side effects are only limited to transactional
variables of type TVar.

Very similar to MVar, we have the following interface for TVar:

data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

STM actions can be composed together using do notation, just like
IO actions. All the STM actions composed together, can be made
compatible with the IO actions using

atomically :: STM a -> IO a

atomically takes in all the STM actions, perform them in a sin-
gle transaction log, and finally commits the transaction log, thus per-
forming an IO action. It also prevents from performing an IO action
within this block by mistake. This helps to not repeat the IO action in
cases of failed validation of transaction log, where the transaction has
to be performed again.

Considering the bank transfer example from [4], we can implement
it using STM as follows:

import Control.Concurrent
import Control.Concurrent.STM

type Account = TVar Int

newAccount :: Int -> IO(Account)
newAccount balance =

atomically (do { acc <- newTVar balance
; return acc })

withdraw :: Account -> Int -> STM ()
withdraw acc amount =

do { bal <- readTVar acc
; writeTVar acc (bal - amount) }

deposit :: Account -> Int -> STM ()
deposit acc amount = withdraw acc (- amount)

getBalance :: Account -> IO Int
getBalance acc =

atomically (do { bal <- readTVar acc
; return bal})

transfer :: Account -> Account -> Int -> IO ()
transfer from to amount =

atomically (do { deposit to amount
; withdraw from amount })

main :: IO()
main = do { acc1 <- newAccount 10

; acc2 <- newAccount 3
; forkIO (transfer acc1 acc2 5)
; forkIO (transfer acc2 acc1 2)
; threadDelay 1000000
; bal1 <- getBalance acc1
; bal2 <- getBalance acc2
; print ("balance in acc1 : ", bal1)
; print ("balance in acc2 : ", bal2)}

Here, in transfer, we use atomically to perform deposit
and withdraw within the same transaction. In the main function,
we can see that the two processes try to access the same accounts, but
none of the transactions affects the other.

4.1 Blocking
There might be a requirement where we wish to block a thread until
certain condition is fulfilled. For instance, we might want to block the
transfer until the sender account has sufficient balance. We can
do this by using the following function described in [4]

retry :: STM a

retry function simply blocks the thread if the given condition is
not fulfilled and retries later after some time. Now, it makes sense
only to retry after some changes have been made to the involved
variables. Thus, retry is attempted only after a write happens to the
variables enlisted in the transaction log of this transaction.

We also have a supportive function check which helps in checking
whther the given condition is satisfied or not.

check :: Bool -> STM ()
check True = return ()
check False = retry

As suggested in [4], we can thus modify our previous example as
follows :

limitedDeposit :: Account -> Int -> STM ()
limitedDeposit acc amount =

limitedWithdraw acc (- amount)

limitedWithdraw :: Account -> Int -> STM ()
limitedWithdraw acc amount =

do { bal <- readTVar acc
; check (amount <= bal)
; writeTVar acc (bal - amount)}

limitedTransfer :: Account -> Account ->
Int -> IO ()

limitedTransfer from to amount =
atomically (do { limitedDeposit to amount

; limitedWithdraw from amount})

4.2 Choice
Now, suppose we wish to have a secondary sender account. For ex-
ample, we wish to transfer amount x from account acc1 to account
acc2. But if acc1 does not have enough balance, instead of blocking
the process, we can transfer from another account acc3. However, if
both of them do not have sufficient balance, we can block until any
one of them gets sufficient funds.

This can be achieved by using another primitive function of STM
Haskell, orElse

orElse :: STM a -> STM a -> STM a

OrElse a b takes two STM actions and combines them such
that : perform a. If a retries, perform b. If b retries, perform the
whole combined action again. Since here too, the internal blocking
happens using retry, action would be retried only when at least one
of the involved transactional variables is changed by any other process.

As suggested in [4], if we wish to accommodate this in our previous
example, code would change as follows :

choiceWithdraw :: Account -> Account ->
Int -> STM ()

-- (choiceWithdraw acc1 acc2 amt)
-- withdraws amt from acc1,
-- if acc1 has enough money, else from acc2.
-- If neither has enough, it retries.

SC@RUG 2020 proceedings

67

choiceWithdraw acc1 acc2 amt =
orElse (limitedWithdraw acc1 amt)

(limitedWithdraw acc2 amt)

choiceDeposit :: Account -> Int -> STM ()
choiceDeposit acc amount =

choiceWithdraw acc acc (- amount)

choiceTransfer :: Account -> Account ->
Account -> Int -> IO ()

choiceTransfer from1 from2 to amount =
atomically (

do { choiceDeposit to amount
; choiceWithdraw from1 from2 amount})

5 COMPARING STM WITH LOCKS

But why do we need STM at all? We have locking mechanism readily
available. It is modular, and simple to execute using conditional
statements.

Let us consider our previous bank transfer example referred
from Beautiful Concurrency [4]. To ensure that the whole transaction
of transferring the amount from one bank account to another happens
atomically, locks can be implemented in some object oriented
language, like Golang, as follows :

\\ Send money from acc1 to acc2
transfer(acc1, acc2 Account, amount int){

acc1.lock(); acc2.lock()

acc1.withdraw(amount)
acc2.deposit(amount)

acc1.unlock(); acc2.unlock()
}

This seems easy. However, it might result into deadlocks at high
scale. For instance, another transfer happening at the same time in the
opposite direction. Both the processes will acquire locks on one of the
accounts, and will wait infinitely for acquiring a lock on the second
account.

If we know that it is going to be only 2 locks to be acquired, we
can put up some condition such that deadlock never happens. For
instance, define a global order for lock acquisition, like

if acc1 < acc2 {
acc1.lock(); acc2.lock()

} else {
acc2.lock(); acc1.lock()

}

This becomes difficult as the function specifications increase, like,
how do we tackle the situation discussed in Section 4.2. In cases of
choice, what is the correct order to acquire locks to be able to avoid
deadlocks? In cases of blocking, we will have to release the locks,
while waiting on a process.

Long story short, locks pose multiple different unresolved issues :

• Taking too many locks which can block other processes, or tak-
ing too less locks which can lead to scenarios where two concur-
rent processes end up working on the same resource.

• Taking the locks in wrong order which can lead to deadlock, as
discussed above.

• Simulating all the scenarios of lock acquisition combinations,
and handling errors in all of them.

• Compositionality and modularity is compromised. For instance,
in the above example, the transfer function needs to know
about the locking mechanisms, which falls out of its scope if
Single Responsibility Principle is followed.

STM handles all these issues with elegance. In STM, order of
changes does not matter because changes occur in transaction log
with optimistic execution. Also, compositionality is preserved by the
monad type STM(). atomically makes sure the whole module is
executed together with no intermediate state being visible to any other
process.

6 CONCLUSION

We have described multiple ways to write concurrent programs in
Haskell. We have discussed the approach to spawn concurrent pro-
cesses, and use shared resources amongst them. We have discussed
mechanisms for message passing among multiple concurrent pro-
cesses. This is achieved using forkIO and MVar. However, it has
one limitation. Updates happen directly at the variable location. This
is good if the system has only one producer and one consumer. But
it can cause inconsistencies in cases of multiple producers and mul-
tiple consumers. Thus, we narrowed down to Software Transactional
Memory STM, implemented using transactional variables TVar. Here,
optimistic execution approach is followed, and the whole module of
transactions is performed only when the transaction log is validated. It
is compared against the popular locking mechanism and the following
guarantees have been developed from STM :

1. Logic for synchronisation need not be a part of the domain
logic [4].

2. Multiples modules can be clubbed together, and the final trans-
action is executed as a whole

3. Within an STM transaction, no actual IO will be performed

As promising as it may seem, STM is also not a silver bullet. There
is an inevitable overhead of maintaining the transaction log, and val-
idating it, and may be redoing the the transaction in cases of failed
validation. It proves to be highly memory and computation intensive
in cases of complex systems with very high scale.

7 FUTURE WORK

We have not considered and compared the above stated tools of con-
currency in Haskell with the available approaches in other languages,
like context, channels and goroutines in GoLang, etc. This research
can be further extended towards such comparisons, and may be draw-
ing a parallel approach of concurrent programming amongst the two
paradigms of sequential programming and object oriented program-
ming.

REFERENCES

[1] Arvind, P. S. Barth, and R. S. Nikhil. M-structures: Extending a parallel,
non-strict, functional language with state. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), September 1991.

[2] Arvind, K. Pingali, and R. S. Nikhil. I-structures - data structures for
parallel computing. ACM Transactions on Programming Languages and
Systems (TOPLAS), October 1989.

[3] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable memory
transactions. Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming (PPoPP ’05), Chicago IL,
USA, June 2005.

[4] S. P. Jones. Beautiful concurrency. In Beautiful Code. O’Reilly Media,
May 2007.

[5] S. P. Jones, A. Gordon, and S. Finne. Concurrent haskell. 23rd ACM
Symposium on Principles of Programming Languages (POPL ’96), St Pe-
tersburg Beach, Florida, January 1996.

[6] J. Launchbury and S. P. Jones. State in haskell. Lisp and Symbolic Com-
putation, December 1995.

[7] B. Yorgey. Haskell basics. Introduction to Haskell - Credit Course in
University of Pennsylvania, December 2014.

Implementing Compositional Concurrency in Haskell – Deepshi Garg

68

A Review of Scene Recognition Techniques Based on
Convolutional Neural Networks

Alina Matei, Andreea Glavan

Abstract— Can computers tell the difference between a hotel room and a bedroom? The field of image recognition has greatly
advanced during the past years, giving way to new challenges such as scene recognition. This paper discusses three approaches to
the task of scene recognition: context based recognition, combining scene and object centric knowledge and spatio-temporal residual
units for dynamic scenes. The approaches are based on convolutional neural networks (CNNs). The aim of the paper is to aid
professionals in making an informed choice about which method is most suitable for the scene recognition task they are facing. For
this purpose, the three approaches are detailed and compared quantitatively, as well as qualitatively. The comparison aims to provide
an overview of the strengths and limitations of the methods. The results indicate that combining scene and object knowledge in CNNs
is superior to only context based recognition. For dynamic scenes, spatio-temporal residual networks achieve state-of-the-art results.
However, the approach should be chosen on a case-by-case basis, since no one method can generalize well to all scene recognition
tasks and datasets.

Index Terms—Computer vision, Deep learning, Image recognition, Convolutional neural networks.

1 INTRODUCTION

During the past years, the field of visual recognition has greatly ad-
vanced such that nowadays state-of-the-art visual recognition tech-
niques can nearly replicate the way a human would describe the con-
tents of an image. Achieving this performance is possible through the
use of deep learning methods, vast training times and large datasets.
One domain of image recognition which still poses difficulty is the
area of scene (or place) recognition.

Given two images, one of a forest and the other of a park or, al-
ternatively, one depicting a restaurant and the other a dining room,
humans are able to identify the different categories by using contex-
tual clues. However, for a computer, these contextual clues are not
obvious, therefore the challenge of distinguishing between scene cate-
gories with low variance remains. Previously, visual recognition tech-
niques have made extensive use of object recognition when faced with
such problems [1, 2]. The scenes would be classified based on exhaus-
tive lists of objects identified in the scene.

With the development of deep learning, a new approach was in-
troduced. Deep learning architectures, such as Convolutional Neural
Networks (CNNs), focus on the overall background of the image and
the presented location, thus attempting scene classification from a con-
textual perspective [3, 4, 5].

The classification of visual data depicting scenes or places can
therefore be approached from two angles: on one hand, by object iden-
tification and on the other hand, by overall context recognition. These
two approaches are complementary since object detection can provide
additional semantic information that might be lost when only consid-
ering the contextual clues. By combining deep learning techniques
with both methods, it is possible to extend the performance obtained
individually by each method [6]. Furthermore, considering the scale at
which objects appear in a scene can facilitate the classification process
by targeting distinct regions of interest within the image. Since objects
usually appear at lower scales, the object classifier should target local
scopes of the image, while the places classifier should be aimed at the
global scale, in order to capture contextual information [7].

Visual data available nowadays is not only presented in a static for-
mat, as images, but also dynamically, as video recordings. The prob-
lem of scene recognition can also be generalized to include dynamic
data. However, this type of data employs an additional level of com-
plexity since the inherent temporal aspect of video recordings must

be considered: a video can capture scenes which suffer temporal al-
terations. In this case, the classification model should be powerful
enough to account for the temporal changes and nonetheless give the
correct scene classification. This issue has been addressed by literature
[8, 9, 10].

In this paper, we present, analyse and compare state-of-the-art scene
recognition techniques which rely on the deep learning framework.
We also include a brief analysis of the datasets available which as-
sisted the fast growing rate of advancement in the field. Our final
contribution is presenting some applications of the techniques inves-
tigated. The aim of the paper at hand is to provide a guideline in the
field of scene recognition, that could possibly assist professionals in
choosing the most suitable approach for scene recognition on a case-
by-case basis. While a wide variety of techniques are available, we
will focus on analysing the following:

1. Scene recognition based on CNNs by combining scene-centric
and object-centric knowledge at different image scales [7]

2. Scene recognition based on pre-trained CNN architectures on the
Places365 database, an emerging dataset covering an exhaustive
set of places categories [11]

3. Dynamic scene recognition using temporal residual networks [8]

The proposed methods are considered quantitatively, by judging
their performances based on metrics such as accuracy (top-1 and top-
5), as well as qualitatively, by analysing their performances and limita-
tions in the context of the corresponding datasets. The implementation
and the results achieved by the approaches cannot be judged indepen-
dent of their experimental setup (i.e. dataset, architecture of the CNN),
therefore the scope and limitations of the conducted experiments must
also be considered.

This paper is structured as follows: in Section 2 we discuss the
available datasets supporting scene and object focused recognition.
Section 3 addresses the methodology of the state-of-the-art techniques
and approaches discussed in the paper at hand. Furthermore, Section 4
presents a detailed comparison of the presented approaches. Finally, in
Section 5, concrete applications of the scene recognition methods are
presented, Section 6 offering the conclusions succeeding our investi-
gation. Lastly, Section 7 suggests possible extensions for the research
conducted in this paper.

2 DATASETS

The aim of using deep learning CNNs for the task of scene recogni-
tion is to tackle the complexity and high variance of the the problem.

69

These aspects are addressed by training models to learn a large range
of specific features of images depicting scenes. The latest advance-
ments in deep learning methods for scene recognition are motivated
by the availability of large and exhaustive datasets.

Most available datasets are focused on object categories, providing
labels, bounding boxes or segmentations. One of the most conspicu-
ous object dataset is ImageNet [12], which provides 3.2 million object
images in total. The exhaustive list of object categories offered by this
dataset follow a hierarchical structure based on the WordNet structure
1. The dataset contains 80,000 noun synsets 2, each synset being il-
lustrated by roughly 500-1000 images. Another notable object dataset
is COCO (Common Objects in Context)[13], which provides a limited
number of 80 object categories illustrated by a total of 1.5 million in-
stances. Open Images V5 3 covers 600 boxable object classes, offering
a training set of roughly 1.7 million images with annotated bounding
boxes, object segmentations as well as visual relationships between
objects. Overall, the problem of object recognition has a vast support
in terms of datasets which can be employed for training deep learning
models.

As for datasets which are scene-centered, initial datasets did not
offer a comprehensive collection of places categories. The 15 scene
dataset [14] includes a limited number of images per scene (i.e. 200-
400 images) collected from the COREL collection, personal images
and Google Image Search. The MIT Indoor67 [15] offers a range of
67 classes of indoor scenes, while the more extensive SUN397 [16]
contains 397 places organized in a tree-like structure, with the three
main meta-classes being: indoor, outdoor natural, outdoor man-made.
However, each class has a limited number of samples with a complete
total of 108,754 images for the entire dataset. A significant step to-
wards the improvement of scene recognition models was the public
release of the Places Database [11]. The Places Database furthered
the scene recognition research by providing an exhaustive collection
of scene images; the range of classes includes categories such as ’air-
field’, ’kindergarten classroom’, ’restaurant’ and ’zen garden’, pro-
viding examples of both common and more peculiar places. A total
of 10 million images were gathered, out of which 365 scene cate-
gories were chosen to be part of the dataset. The dataset is available in
the Places365-standard format (i.e. 365 categories, roughly 1 million
images training set, validation set with 50 images per class and test
with 900 images per class) and the Places365-challenge format which
extends the training set to 8 million image samples in total. With a
dataset of this magnitude, training of CNNs exclusively on scene data
becomes feasible, such an approach is presented in Section 3.

Scene recognition also encloses dynamic scene data; due to the
limited amount of available datasets which include such data, most
of the research efforts in this sub-field also include gathering suit-
able experimental data. Literature [17] contributes the Maryland ”in-
the-wild” dataset, which includes 13 classes each amounting for 10
videos chosen for a high intra-class variance. The categories vary from
’avalanche’ to ’smooth traffic’ scenes. The YUPENN dataset [18] in-
troduces 14 classes depicting natural dynamic scenes (i.e. ’beach’,
’city street’, ’water fall’), with an overall total of 420 image sequences.
As opposed to the Maryland ”in-the-wild” dataset, which contains a
high degree of scale motion due to camera movement, the YUPENN
dataset presents data captured by static cameras. Literature [8] ex-
tends the YUPENN dataset, introducing the YUP++ dataset which
samples 20 scene classes and enhances the number of videos per class
(i.e. three times as many videos compared to the YUPENN dataset).
The additional categories are ’building collapse’, ’escalator’, ’falling
trees’, ’fireworks’, ’marathon’ and ’waving flags’. The scope of the
categories that are being recorded amongst the three datasets presented
is not nearly as exhaustive as in the case of the objects and places

1The WordNet lexical database for the English language can be accessed
here: https://wordnet.princeton.edu/

2Sets of synonyms that can be used interchangeably to refer to the same
concept

3The dataset can be accessed here:
https://storage.googleapis.com/openimages/web/download.html

Fig. 1. Image examples from the Places Database. Top Rows present
images from two classes (i.e. ’kitchen’ and ’campus’) with high intra-
class variance. Middle and Bottom Rows present pairs of classes (i.e.
’cubicle office’ and ’office cubicles’, ’baseball field’ and ’stadium base-
ball’) with low inter-class variance.

datasets mentioned above. This is an indicator of the incipient status
of research in this particular area of scene recognition.

3 METHODOLOGY

Various approaches have been proposed for the task of scene recog-
nition; these methods vary in several aspects: from the supporting
datasets used, the architectural models employed for feature extraction
to the type of features of interest which are used to describe the scenes.
In the section at hand, three different methodologies are detailed.

3.1 Static image based scene recognition
The inherent difficulty of the place recognition task is closely related
to the nature of the images depicting a scene context. Literature [19]
describes two major challenges: visual inconsistency and annotation
ambiguity.

On the one hand, visual inconsistency refers to the high intra-class
variance of scene categories. Demarcation of the categories is a sub-
jective process which is highly dependent on the experience of the
annotators, therefore images from the same category can showcase
significant differences in context and appearance (see Figure 1, first
two rows).

On the other hand, annotation ambiguity refers to low inter-class
variance. Some scene categories can share similar visual appearances
which creates the issue of class overlaps. Since images belonging to
two different classes can be easily confused with one another (see Fig-
ure 1, four bottom rows), the class overlap cannot be neglected.

In order to account for these challenges inherent to static images,
various approaches propose considering the semantic or contextual
composition of the image as detailed below.

3.1.1 Places CNNs for scene recognition
Literature [11] introduces a new database benchmark for place recog-
nition, specifically the Places Database (variations of this are the
Places365-standard and Places365-challenge datasets described in
Section 2). According to the authors of [11], the database encom-
passes a total of 434 scenes which account for 98% of the type of
places a person can encounter in the natural and man-made world.

The approach proposed by the authors of literature [11] is to ex-
ploit the vast dataset at hand by training three popular Convolutional
Neural Network (CNN) architectures (i.e. AlexNet [20], GoogLeNet
[21], VGG16 [22]) on the available formats of the Places dataset. Fur-
thermore, the ResNet152 [23] residual network architecture has been
fine-tuned over the Places365-standard dataset. The choice for deep
architectures is motivated by the complexity of the task: since the im-
ages are not described semantically (for example, as defined by the
objects present in the scene) the models used are aimed at learning

A Review of Scene Recognition Techniques Based on Convolutional Neural Networks – Alina Matei and Andreea
Glavan

70

generic, contextual features of the scenes, which are captured by the
high-level convolutional layers.

3.1.2 Combining object-centric and scene-centric knowledge
at scale in CNNs

The approach presented by literature [7] entails effectively combining
object-centric and scene-centric knowledge as an alternative for patch-
based CNNs for scene recognition. Patch-based CNNs typically use
a singular CNN model to analyse various patches extracted from the
original input image; these patches have, consequently, various scales.
This method addresses the issue of dataset biases which arise under
different scaling conditions of the images. If the scaling operation is
significant, the features of the data can drastically change from de-
scribing scene data to object data. Using an singular generic CNN
model as a feature extractor from patches cannot overcome the bias
introduced by the different scales of the image. However, networks
trained on specific datasets (i.e. places or object specific datasets) are
more suitable for different scale ranges, therefore alleviating the bias
problem.

The proposed method for scene recognition involves a multi-scale
model which combines various CNNs specialized either on object or
place knowledge. The architectures are employed to extract features
in parallel from patches, which represent the input image at increas-
ingly larger scale versions. In order to aggregate the extracted features
over the architectures used, simple max pooling4 is adopted in order
to downsample the feature space. The multi-scale model combines
several AlexNet architectures [20]. The hybrid multi-scale architec-
ture uses distinctive models for different scale ranges; depending on
the scale range, the most suitable model is chosen from: object-centric
CNN (pre-trained on the ImageNet dataset [12]), scene-centric CNN
(pre-trained on the Places dataset [11]) or a fine-tuned CNN (adapted
to the corresponding scale based on the dataset at hand). An overview
of the proposed model is presented in Figure 2.

Fig. 2. Multi-scale hybrid architecture combining scale-specific networks
as proposed by [7]. ImageNet and Places pre-trained CNNs are com-
bined according to the corresponding scale of the image patch. This
method adapts test data to the underlying train data of the networks to
account for dataset biased. Scale specific features are obtained using
max pooling at each scale, then concatenated into a final multi-scale
feature.

The hybrid multi-scale model suggested can also be seen as a man-
ner of combining and exploiting the training data available in the
Places and ImageNet datasets. The knowledge learned from the two
datasets is combined in a scale-adaptive way. In total, seven scales
were considered; the scales were obtained by scaling the original im-
ages between 227x227 and 1827x1827 pixels. Variations of the archi-
tecture proposed include a single-scale architecture (for establishing a
baseline), two-scale hybrid architecture (i.e. using one network pre-
trained on ImageNet and one pre-trained on Places) and finally, the
multi-scale hybrid architecture which employs seven networks (either
pre-trained on ImageNet or Places) applied to seven different scales.
For the final classification given by the multi-scale hybrid approach,

4Max pooling is a pooling operation which computes the maximum value
in each patch of a feature map; it is employed for downsampling input repre-
sentations.

the concatenation of the fc7 features (i.e. features exptracted by the
7th fully connected layer of the CNN) from the seven networks are
considered. Principal component analysis (PCA) is used to reduce the
feature space, the final feature vector has approximately 4096 com-
bined dimensions.

3.2 Dynamic image sequences based scene recognition
While early research in the field of scene recognition has been directed
at single images, lately attention has been naturally drawn towards dy-
namic scene recognition. The task of dynamic scene recognition is
closely related to action recognition [24, 25] as well as video-based
recognition [26, 27]. CNNs have shown promising results for the gen-
eral task of scene recognition in single images and have the potential
to be generalized to video data as well [25, 28]. To achieve this gener-
alization, the spatio-temporal nature of dynamic scenes must be con-
sidered: while static scenes (depicted as single images) only present
spatial features, dynamic scenes also capture temporal transformations
which affect the spatial aspect of the scene.

3.2.1 Temporal residual networks for dynamic scene recogni-
tion

Literature [8] introduces an original CNN architecture, T-ResNet,
based on residual networks [29, 30]. T-ResNet employs transfer
learning to adapt the spatial-centric residual architecture to a spatio-
temporal-centric network. The transfer learning process implies main-
taining and adapting the knowledge stored by the spatial residual net-
work after the transformation to the spatio-temporal architecture.

The spatial CNN used as a starting point is the ResNet50 archi-
tecture [23], pre-trained on the ImageNet dataset [12]. The architec-
ture is transformed into T-ResNet by replacing the last layer (i.e. the
prediction layer); every first and third residual unit at each convolu-
tional stage (i.e. conv2 x to conv5 x) that includes residual units are
switched to the proposed spatio-temporal unit. The proposed spatio-
temporal unit injects temporal information into residual blocks of the
CNN through 1D temporal filtering (see Figure 3). The proposed tem-
poral convolution block builds on the idea of inception: using spatio-
temporal filters, the architecture is able to model the temporal charac-
teristic of the features learned by the previous layer. The temporal fil-
ters are initialized at random. To complete the architectural structure,
temporal max pooling is performed after the spatial global average
pooling layer present in the ResNet50 model.

Fig. 3. Comparison between the original residual unit of the ResNet ar-
chitecture (left) with the temporal residual unit of the proposed T-ResNet
architecture [8] (right). The temporal residual unit extends the ’bottle-
neck structure’ of the original residual unit with an additional temporal
convolutional block and an affine scaling layer, sl .

T-ResNet accepts 16 frame inputs. To guarantee transfer learning,
the network is trained on the corresponding dataset (depending on the
context in which the architecture is used) with a very low learning rate
(i.e. 10−2). The learning rate is decreased by an order of magnitude

SC@RUG 2020 proceedings

71

after the performance on the validation set stagnates. Batch normal-
ization [31] is used with no dropout 5.

Given the spatio-temporal feature of the network, the training pro-
cess can be accelerated by considering the two aspects involved: in the
first stage, the network is trained in a spatial manner (training data is
randomly sampled from the sets of frames, one frame per set), while
during the second stage the residual units are transformed to the pro-
posed spatio-temporal units and the training process is restarted (train-
ing data now contains the entire set of 16 frames).

4 COMPARISON AND DISCUSSION

The different methods presented in Section 3 have their strong and
weak points. In order to give an overview of the cases for which each
method is most suitable, the results obtained by each approach will be
considered and discussed from a quantitative and qualitative point of
view.

4.1 Quantitative comparison of the presented methodol-
ogy

The quantitative comparison refers to the top-1 accuracy metric, which
is defined as the percentage of total correct predictions out of the total
number of data points in the test set.

The method described in Section 3.1.1 (places CNN) displayed the
highest accuracy, 92.99%, on the SUN Attribute dataset [32] (used
as a test set in this case). The architecture which obtained this score
is VGG [22], pre-trained on the Places365 dataset. The method de-
scribed in Section 3.1.2 (object and places CNN) obtained the highest
accuracy of 95.18% on the 15 scenes dataset [14] with the dual hy-
brid architecture proposed (two-scale model consisting of ImageNet
and Places pre-trained networks based on the scale). Considering the
study presented by [33], both approaches obtain a significantly higher
accuracy in contrast to a human expert which only achieves a percent-
age of 70.60% in accuracy.

To compare the performance of the above approaches for static
scene recognition, their performance on the following datasets is con-
sidered: 15 scenes dataset [14], MIT Indoor 67 [15] and SUN 397
[16]. An overview of the quantitative results comparison is presented
in Table 1. The obtained accuracies are presented below:

• 15 scenes dataset: the places CNN (see Section 3.1.1) obtains ac-
curacy 91.97% with architecture VGG pre-trained on Places365,
while the Hybrid1365 VGG (pre-trained on the 1365 merged
classes of ImageNet and Places365) obtains 92.15% in accu-
racy. The seven-scale hybrid VGG architecture which combines
object-centric and scene-centric data (see Section 3.1.2) is supe-
rior, with a 94.08% accuracy percentage.

• MIT Indoor 67: the seven-scale hybrid approach with AlexNet
networks obtains a 80.97% accuracy, being again superior to the
Places365 VGG architecture with a mere 76.53% accuracy score.

• SUN 397: the SUN 397 is a more complex dataset, therefore an
overall decrease in performance can be observed; however, the
seven-scale hybrid architecture with AlexNet networks is win-
ning over the Places365 VGG model with accuracy 65.38% com-
pared to 63.24%.

Moreover, the Hybrid1365 VGG architecture scores the highest av-
erage accuracy of 81.48% over all the experiments conducted for the
place-centric CNN approach (has highest performance for 2 out of 3
comparison datasets as shown in Table 1). This, together with the
quantitative comparison above, shows that the approach of combining
both object-centric and scene-centric knowledge can potentially estab-
lish a new performance standard for scene recognition.

The results achieved by the T-ResNet architecture described in Sec-
tion 3.2.1 will be presented individually, since there are no grounds

5Dropout refers to ignoring a random number of units of the network at
training phase to avoid overfitting.

15 scenes MIT Indoor SUN 397
Places CNNs

Places365 AlexNet 89.25% 70.72% 56.12%
Places365 GoogleNet 91.25% 73.20% 58.37%
Places365 VGG 91.97% 76.53% 63.24%
Hybrid1365 VGG 92.15% 79.49% 61.77%

Object and scene centric knowledge at scale
7-scale Hybrid VGG 94.08% 80.22% (w/ FT) 63.19%*
7-scale Hybrid AlexNet 93.90% 80.97% (w/ FT) 65.38%

Table 1. An overview of the quantitative comparison between methods
proposed in [11] and [7]. The winning performances are highlighted
in bold; w/FT refers to the fine-tuning of the architecture on the corre-
sponding dataset. *6 scales only, scale 1827x1827 not included due to
the nature of the dataset.

YUP++ static YUP++ moving YUP++ complete
Temporal residual network for dynamic scenes

ResNet 86.50% 73.50% 85.90%
T-ResNet 92.41% 81.50% 89.00%

Table 2. Overview of the results achieved by the spatio-temporal resid-
ual network (T-ResNet) proposed in [8]. Literature [8] also proposes a
new dataset (YUP++ complete). YUP++ static refers to the partition of
the dataset capture with a static camera, while YUP++ moving to the
partition with camera movement.

for comparison with the previously mentioned methods due to the dif-
ferent characteristics of the corresponding data (static vs. dynamic).
The YUP++ dataset [8] was used for proving the performance of the
novel T-ResNet model. T-ResNet is mainly compared with the clas-
sical ResNet architecture as shown in Table 2. The superiority of the
T-ResNet is evident: T-ResNet achieves the following percentages in
accuracy: 92.41% on the YUP++ static camera partition, 81.50% on
the YUP++ moving camera partition and finally 89.00% on the entire
YUP++ dataset. Opposingly, ResNet achieves the respective percent-
ages: 86.50%, 73.50% and 85.90%. The most significant difference
worth of 8 percentage points is attained for the moving camera parti-
tion of the dataset, which presents a more complex challenge (in com-
parison with the dynamic data captured with a static camera). This
demonstrates the superiority of the spatio-temporal approach.

4.2 Qualitative comparison of the presented methodology

Addressing the task of scene recognition from the place perspective as
presented in Section 3.1.1, the CNNs are expected to learn deep fea-
tures that are relevant for the contextual clues present in the image.
Literature [11] observers that the low-level convolutional layers de-
tect low-level visual concepts such as object edges and textures, while
the high-level layers activate on entire objects and scene parts. Even
though the model has been previously trained on an exclusively places-
centric dataset, the network still identifies semantic clues in the im-
age by detecting objects alongside contextual clues. Therefore, CNNs
trained on the Places Database (which does not contain object labels)
could still be employed for object detection.

Another aspect arising from training the same architecture on
datasets with different number of scene categories (i.e. Places205 and
Places365) proves that having more categories leads to better results
as well as more predicted categories (architecture AlexNet trained on
Places205 obtains 0.572 top-1 accuracy, while the same architecture
trained on Places365 obtains 0.577 accuracy) as stated in [11]. For the
places CNN approach two main types of mis-classifications occur (see
Figure 4): on one hand, less-typical activities happening in a scene
context (e.g. taking a photo at a construction site) and on the other
hand, images depicting multiple scene parts. A possible solution, as
proposed by [11], would represent assigning multiple ground-truth la-
bels in order to capture the content of an image more precisely.

A Review of Scene Recognition Techniques Based on Convolutional Neural Networks – Alina Matei and Andreea
Glavan

72

Fig. 4. Examples of validation set mis-classifications of the Places365-
VGG architecture proposed by [11]. The ground truth label is referred to
as GT. It can be observed that the top-5 predictions are, to some extent,
related to the GT category, which would suggest introducing multi-label
GTs.

One observation arising from both methods presented for static im-
age based scene recognition (see Section 3.1.1 and 3.1.2) is that deeper
CNN architectures such as GoogLeNet [21] or VGG [22] are not su-
perior in all cases. For the hybrid multi-scale model combining scene-
centric and object-centric networks in [7], experiments using VGG ar-
chitecture for more than two-scales (two VGG networks) obtained dis-
appointing results, inferior to the baseline performance achieved with
one single scale (one network). Since the multi-scale hybrid model en-
tails seven different scales, it can be inferred that VGG becomes noisy
when applied on small input image patches.

The T-ResNet architecture, alongside the corresponding introduced
dataset, established a new benchmark in the sub-field of dynamic scene
recognition. The dataset introduced in [8] poses new challenges by
introducing a larger variety of classes (i.e. 20 classes as compared
to the previously largest dataset which contains only 16 classes) to-
gether with more complex data (i.e. videos with camera motion).
T-ResNet obtains state-of-the art results, as per literature [8], for the
scenes captured by a static camera; the model exhibits strong perfor-
mance for classes with linear motion patterns (for example, classes
’elevator’, ’ocean’, ’windmill farm’), however, for scene categories
presenting irregular or mixed defining motion patterns (for example,
classes ’snowing’ and ’fireworks’) the performance is negatively im-
pacted. The authors of [8] observed that, for data points which contain
camera motion, T-ResNet presents a decrement in performance. The
proposed model exhibits difficulties distinguishing intrinsic scene dy-
namics from the additional motion of the camera. Further research is
required to account for this difference.

The results achieved by the T-ResNet model illustrate the poten-
tial of spatio-temporal networks for dynamic scenes. The transforma-
tion from a purely spatial network to a spatio-temporal one can suc-
ceed on the basis of a very small training set (i.e. only 10% of the
YUP++ dataset introduced) as proven by [8]. Well-initialized spatial
networks can be efficiently transformed to extract spatio-temporal fea-
tures, therefore, in theory every network that performs well on static
scenes could be easily adapted to dynamic scenes.

UCF101 HMDB51
State of the art

Literature [36] 92.40% 62.00%
Literature [37] 92.50% 65.40%
Literature [38] 93.40% 66.40%

T-ResNet [8]
Appearance 85.40% 51.30%
Flow 89.10% 62.00%
Fusion 93.90% 67.20%

Table 3. Accuracy comparison of the T-ResNet architecture and
state-of-the-art models on action recognition datasets (UCF101 [34],
HMDB51 [35]) as presented in [8]. The temporal residual units are ap-
plied on the appearance and flow networks of a two-stream architecture
[39]. The fusion of the two streams achieves the highest accuracy.

The authors of [8] conducted experiments to analyse the general-
ization ability of the proposed network on action recognition tasks.
For the challenge of action recognition, optical flow is a discrimina-
tive feature. The proposed T-ResNet architecture presents a healthy
performance improvement on two popular action recognition datasets
(i.e. UCF101 [34], HMDB51 [35]) in contrast to previously achieved
state-of-the-art results as shown in Table 3. The performance boost
of T-ResNet, according to [8], is based on the added temporal filters
which are 1x1 in spatial dimension and span only 3 instances in time,
which come at a very low cost.

5 APPLICATIONS

In order to illustrate the motivation behind the task of scene recog-
nition, the section at hand addresses several real-life applications in
which scene recognition assumes a central role.

5.1 Scene and event recognition
Literature [6] and [40] present the connection between scene and event
recognition. Literature [6] presents a pipe-line approach combining
object-centric and places-centric CNNs for event recognition. The
approach borrows on the idea presented by the method described in
Section 3.1.2, which proposes the combination of scene and object
knowledge from existing datasets. The challenge exposed by [6] is
the classification of 50 cultural events around the world; the events
are captured by single images, however the contents of the images are
highly detailed and dynamic (usually expressing movement). The au-
thors of [40] propose a recognition tool for events in photo albums.
They extract deep scene and object features directly from the image
using a CNN architecture. Consequently, the extracted features are
analysed with a probabilistic graphical model (PGM) which gives the
event classification. The model integrates feature relevance in order to
managed the increased complexity of multi-scene images.

5.2 Scene recognition in egocentric photo-streams from
lifelogging

Lifelogging is the process of documenting one’s daily activities by
wearing a first-person narrative camera. The visual data capture is re-
ferred to as egocentric data. Egocentric data usually implies low image
quality. Literature [41, 42, 43] deals with static and dynamic visual
egocentric data for identification of personal scenes. Recognizing per-
sonal context has useful applications in stress monitoring, as well as
detecting daily routine. Another closely related task is recognition of
daily activities.

The task of scene recognition is furthered detailed in literature [44]
which presents a hierarchical classification approach for food-scenes.
The challenge in this case is represented by the high similarity be-
tween the food-scenes. This classification tool is able to categorize
a taxonomy of 15 different food places (e.g. supermarket, restaurant,
coffee shop, market outdoor). This can be potentially applied in nutri-
tional medicine by aiding the process of discovering eating routines in
a person’s life. This could assist nutritionist in offering personalized
treatment for a healthier nutritional lifestyle.

SC@RUG 2020 proceedings

73

5.3 Scene recognition for robot localization
Indoor localization for mobile robots is one of the emerging applica-
tion scopes of scene recognition. According to the authors of [45], in
the following two decades, every household could own a social robot
employed for housekeeping, surveillance or companionship tasks. Lit-
erature [46] and [45] propose the VGG CNN architecture, either with
transfer learning or fine-tuning, as the means for scene recognition
for service or social robots localization. Another complementary ap-
proach is presented in [47]. In this case, an object-centric approach
is taken: based on the objects detected, a semantic map of the scene
is created in order to facilitate the indoor localization. The authors
of [48] introduce a novel, more compact CNN architecture, which
achieves state-of-the-art classification results. The model shows a
high level of robustness, since it accounts for the viewpoint and vari-
ous lighting conditions which impact the quality of the scene image.
Moreover, the compactness of the introduced CNN model facilitates
its embedding in the robot’s own architecture.

6 CONCLUSION

In this work, we compared three state-of-the-art techniques based on
CNNs for scene recognition. Furthermore, we presented some of the
applications of scene recognition to emphasize the importance of this
topic.

For the task of static scene recognition, the combination of scene-
centric and object-centric knowledge has proven superior to only con-
sidering the scene context. Moreover, the novel availability of large,
exhaustive datasets, such as the Places Database, is offering significant
support for further research for the challenge of place recognition.

Dynamic scene recognition reached new state-of-the-art perfor-
mance through the approach of adapting spatial networks to the task,
transforming the network to also consider the temporal aspect of the
scenes. These emerging spatio-temporal networks are suitable for
video data captured with a static camera, however it still faces diffi-
culties in the case of added camera motion.

To conclude, we argue that the main factor to consider is the type
of data on which recognition and classification is applied. Since the
task of scene recognition is not entirely subjective due to the nature of
the scene images and the scene categories overlap, no one particular
method can be generalized to all scene recognition tasks.

We hope this paper will inspire and aid professionals in making an
informed decision about which approach best fits their scene recogni-
tion challenge.

7 FUTURE WORK

The research presented in this paper is not exhaustive, analysing only
three approaches to scene recognition. Moreover, the comparison of
the methods is relative to each other, since currently there is no base-
line method that can generalize to all scene recognition tasks. For
future work, we suggest furthering the research to include more per-
spectives on the problem at hand. Some methods which have the po-
tential of challenging the current state-of-the-art are presented in [49]
[50] [51] [52]. Moreover, we think a clear demarcation between static
and dynamic scene recognition should be made for more detailed com-
parisons.

ACKNOWLEDGEMENTS

The authors wish to thank Estefanı́a Talavera Martı́nez for providing
her expert opinion on the topic of scene recognition.

REFERENCES

[1] L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei, “Objects as attributes for scene
classification,” in European conference on computer vision, pp. 57–69,
Springer, 2010.

[2] A. Bosch, X. Muñoz, and R. Martı́, “Which is the best way to orga-
nize/classify images by content?,” Image and vision computing, vol. 25,
no. 6, pp. 778–791, 2007.

[3] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances in
Neural Information Processing Systems 27 (Z. Ghahramani, M. Welling,

C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 487–495,
Curran Associates, Inc., 2014.

[4] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical
features for scene labeling,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 8, pp. 1915–1929, 2012.

[5] M. P. Kumar and D. Koller, “Efficiently selecting regions for scene un-
derstanding,” in 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pp. 3217–3224, IEEE, 2010.

[6] L. Wang, Z. Wang, W. Du, and Y. Qiao, “Object-scene convolutional neu-
ral networks for event recognition in images,” CVPR, ChaLearn Looking
at People (LAP) challenge, 2015.

[7] L. Herranz, S. Jiang, and X. Li, “Scene recognition with cnns: objects,
scales and dataset bias,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 571–579, 2016.

[8] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Temporal residual networks
for dynamic scene recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4728–4737, 2017.

[9] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Dynamic scene recognition
with complementary spatiotemporal features,” IEEE transactions on pat-
tern analysis and machine intelligence, vol. 38, no. 12, pp. 2389–2401,
2016.

[10] C. Feichtenhofer, A. Pinz, and R. P. Wildes, “Bags of spacetime energies
for dynamic scene recognition,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2681–2688, 2014.

[11] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A
10 million image database for scene recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017.

[12] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, Ieee, 2009.

[13] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in con-
text,” in European conference on computer vision, pp. 740–755, Springer,
2014.

[14] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spa-
tial pyramid matching for recognizing natural scene categories,” in 2006
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, pp. 2169–2178, IEEE, 2006.

[15] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 413–420,
IEEE, 2009.

[16] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun database:
Large-scale scene recognition from abbey to zoo,” in 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
pp. 3485–3492, IEEE, 2010.

[17] N. Shroff, P. Turaga, and R. Chellappa, “Moving vistas: Exploiting mo-
tion for describing scenes,” in 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 1911–1918, IEEE,
2010.

[18] K. G. Derpanis, M. Lecce, K. Daniilidis, and R. P. Wildes, “Dynamic
scene understanding: The role of orientation features in space and time in
scene classification,” in 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1306–1313, IEEE, 2012.

[19] L. Wang, S. Guo, W. Huang, Y. Xiong, and Y. Qiao, “Knowledge guided
disambiguation for large-scale scene classification with multi-resolution
cnns,” IEEE Transactions on Image Processing, vol. 26, no. 4, pp. 2055–
2068, 2017.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

[22] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[24] M. Marszalek, I. Laptev, and C. Schmid, “Actions in context,” in
2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2929–2936, IEEE, 2009.

[25] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,

A Review of Scene Recognition Techniques Based on Convolutional Neural Networks – Alina Matei and Andreea
Glavan

74

R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4694–4702, 2015.

[26] D. Park, C. L. Zitnick, D. Ramanan, and P. Dollár, “Exploring weak stabi-
lization for motion feature extraction,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 2882–2889, 2013.

[27] Y. Poleg, A. Ephrat, S. Peleg, and C. Arora, “Compact cnn for indexing
egocentric videos,” in 2016 IEEE winter conference on applications of
computer vision (WACV), pp. 1–9, IEEE, 2016.

[28] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative cnn video rep-
resentation for event detection,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1798–1807, 2015.

[29] M. Thorpe and Y. van Gennip, “Deep limits of residual neural networks,”
arXiv preprint arXiv:1810.11741, 2018.

[30] A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave like
ensembles of relatively shallow networks,” in Advances in neural infor-
mation processing systems, pp. 550–558, 2016.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[32] G. Patterson and J. Hays, “Sun attribute database: Discovering, anno-
tating, and recognizing scene attributes,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2751–2758, IEEE, 2012.

[33] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva, “Sun database:
Exploring a large collection of scene categories,” International Journal of
Computer Vision, vol. 119, no. 1, pp. 3–22, 2016.

[34] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402,
2012.

[35] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in 2011 Interna-
tional Conference on Computer Vision, pp. 2556–2563, IEEE, 2011.

[36] X. Wang, A. Farhadi, and A. Gupta, “Actions˜ transformations,” in Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recog-
nition, pp. 2658–2667, 2016.

[37] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1933–1941,
2016.

[38] R. Christoph and F. A. Pinz, “Spatiotemporal residual networks for video
action recognition,” Advances in Neural Information Processing Systems,
pp. 3468–3476, 2016.

[39] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in Advances in neural information process-
ing systems, pp. 568–576, 2014.

[40] S. Bacha, M. S. Allili, and N. Benblidia, “Event recognition in photo al-
bums using probabilistic graphical models and feature relevance,” Jour-
nal of Visual Communication and Image Representation, vol. 40, pp. 546–
558, 2016.

[41] A. Furnari, G. M. Farinella, and S. Battiato, “Recognizing personal con-
texts from egocentric images,” in Proceedings of the IEEE International
Conference on Computer Vision Workshops, pp. 1–9, 2015.

[42] A. Furnari, G. M. Farinella, and S. Battiato, “Recognizing personal lo-
cations from egocentric videos,” IEEE Transactions on Human-Machine
Systems, vol. 47, no. 1, pp. 6–18, 2016.

[43] A. Furnari, G. M. Farinella, and S. Battiato, “Temporal segmentation of
egocentric videos to highlight personal locations of interest,” in European
Conference on Computer Vision, pp. 474–489, Springer, 2016.

[44] E. T. Martinez, M. Leyva-Vallina, M. K. Sarker, D. Puig, N. Petkov,
and P. Radeva, “Hierarchical approach to classify food scenes in egocen-
tric photo-streams,” IEEE journal of biomedical and health informatics,
2019.

[45] K. M. Othman and A. B. Rad, “An indoor room classification system for
social robots via integration of cnn and ecoc,” Applied Sciences, vol. 9,
no. 3, p. 470, 2019.

[46] P. Wozniak, H. Afrisal, R. G. Esparza, and B. Kwolek, “Scene recognition
for indoor localization of mobile robots using deep cnn,” in International
Conference on Computer Vision and Graphics, pp. 137–147, Springer,
2018.

[47] D. Chaves, J. Ruiz-Sarmiento, N. Petkov, and J. Gonzalez-Jimenez, “In-
tegration of cnn into a robotic architecture to build semantic maps of in-
door environments,” in International Work-Conference on Artificial Neu-
ral Networks, pp. 313–324, Springer, 2019.

[48] H. Baumgartl and R. Buettner, “Development of a highly precise place
recognition module for effective human-robot interactions in changing
lighting and viewpoint conditions,” in Proceedings of the 53rd Hawaii
International Conference on System Sciences, 2020.

[49] H. Seong, J. Hyun, H. Chang, S. Lee, S. Woo, and E. Kim, “Scene recog-
nition via object-to-scene class conversion: end-to-end training,” in 2019
International Joint Conference on Neural Networks (IJCNN), pp. 1–6,
IEEE, 2019.

[50] L. Chen, W. Zhan, W. Tian, Y. He, and Q. Zou, “Deep integration: A
multi-label architecture for road scene recognition,” IEEE Transactions
on Image Processing, vol. 28, no. 10, pp. 4883–4898, 2019.

[51] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and T. Sorsa, “Com-
putational auditory scene recognition,” in 2002 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, vol. 2, pp. II–1941,
IEEE, 2002.

[52] A. A. Rafique, A. Jalal, and A. Ahmed, “Scene understanding and recog-
nition: Statistical segmented model using geometrical features and gaus-
sian naı̈ve bayes,” in IEEE conference on International Conference on
Applied and Engineering Mathematics, 2019.

SC@RUG 2020 proceedings

75

Deep learning in oncology for predicting cancer radiotherapy
treatment outcome – A survey

Jeroen G. S. Overschie and Hichem Bouakaz

Abstract— A commonly used treatment for cancer is radiation therapy. However, patients potentially diagnosed with cancer undergo-
ing radiotherapy suffer from numerous unwanted side-effects. Therefore, it is at all times desired to apply only the minimally required
radiation dosage. A treatment outcome prediction can be made by analyzing pre-treatment medical imaging to infer a suitable radi-
ation dosage. But this is a difficult task: every individual tumour is different and hence a one-size-fits-all solution is not sufficient. In
conventional methods, experts analyzed medical data manually, which does not always yield optimal results due to human- bias or
imprecision.
Instead, systematic analysis can yield better results. Deep Learning is a branch of machine learning, in which a multitude of neural
network layers are applied to make image-analysis and classification possible. This technique can be used to analyze tumour CT
imaging, with a prevalent implementation known as a Convolutional Neural Network (CNN).
In this survey, various methods of applying Deep Learning, CNN’s specifically, in the field of oncology are explored to predict radio-
therapy treatment outcome for cancer patients. Three methods are examined: (1) a CNN for H&N cancers, (2) a 3D rCNN for H&N
cancers and (3) a 3D CNN for lung cancers. Opportunities are present in automating segmentation, 3D CNN and the use of more
data sources. Limitations arise accordingly with higher demands for processing power and larger dataset size. Overall, the use of
Deep Learning to better predict cancer radiotherapy treatment outcomes has promising results.

Index Terms—Cancer, Oncology, Radiation therapy, Treatment Outcome Prediction, Prognosis, Machine Learning, Deep Learning.

1 INTRODUCTION

Cancer remains to be one of the leading causes of death in the modern
world [20]. Along with Heart Disease, this disease is the most preva-
lent cause of death to ageing populations. Therefore, good treatment
strategies should be developed, which often involve radiotherapy treat-
ment. Radiotherapy treatment, however, has many undesired side ef-
fects. Depending on the body region to which radiotherapy treatment
is applied, patients experience skin problems, fatigue, hair loss and
sickness [5]. Therefore, to minimize undesired side effects as much
as possible, radiotherapy treatment dosage should be kept to a mini-
mum level, while still retaining treatment effectiveness. For this rea-
son, thorough pre-treatment patient analyses should be conducted, to
determine exactly what dosage of radioactivity is sufficient for the pa-
tient. The pre-treatment analysis consists out of assessing how a spe-
cific tumour will react to the radiotherapy treatment, to then be able to
determine an individualized dosage best suitable for the patient. This
process is known as radiotherapy treatment outcome prediction.

Many methods for predicting radiotherapy treatment outcomes have
been proposed, e.g. by focusing primarily on the use of image
biomarkers to determine an effective dosage [21] or by calculating risk
and survival estimates using logistic regression [17]. With advances in
computer processing power, new possibilities arose to do more thor-
ough processing on image-modality output. For example, CT-scan
outputs produce voxels (3-dimensional, volumetric pixels) with a reso-
lution that is such, that many possibly interesting features remain hid-
den from the human eye to distinguish [16]. Thus lie the opportunity
for machine processing and machine learning from the images.

Recent advancements in the machine learning field led to the devel-
opment of Deep Learning, where, in contrast to other machine learning
methods, the entire image with all its raw pixel values is used as input
to the network. Alternative methods for processing images would first
perform a feature extraction step, to reduce the dimensionality of the
data drastically. In Deep Learning, however, the raw input data is sent
through multiple layers before performing a final prediction. In this

• J.G.S. Overschie at University of Groningen, MSc student Data Science
and Systems Complexity, E-mail: j.g.s.overschie@student.rug.nl.

• Hichem Bouakaz at University of Groningen, MSc student Software
Engineering and Distributed Systems, E-mail: h.bouakaz@student.rug.nl.

way, more complex and previously unseen image features can be con-
structed, opening up opportunities to make better treatment outcome
predictions and advance the field of oncology.

The primary research goal of this survey is to construct an overview
of applying Deep Learning in the field of Oncology and to assess ef-
fectiveness of multiple methods of using Deep Learning for predicting
cancer radiotherapy treatment outcome. Three methods are thoroughly
examined, to then be able to assess their strengths and weaknesses.
Given enough analysis, a comparison can then be made between the
three methods. To our knowledge, the three state-of-the-art methods
have not been compared before - therefore identifying its strengths and
weaknesses could help guide future researchers to advance the topic.
The survey is focused on a technical perspective, highlighting design
choices related to the deep learning implementation. The paper is writ-
ten with background information on deep learning included, such that,
given some familiarity with machine learning, clinicians and oncolo-
gists in the medical field are also able to understand the relevance of
applying Deep Learning to Oncology.

The structure of this survey is outlined as follows. First, the reader
is provided with background on the subject and given an overview
of computer-based methods used for medical images analysis in Sec-
tion 2. The methods used in the compared papers are explained and
an overall overview of each method is discussed in Section 3. The
same methods are then further assessed in terms of advantages and
disadvantages in Section 4. Further more, an overall comparison is
provided in Section 5. In Section 6 we will elaborate on the findings
of the survey. Finally, in Section 7 future work is considered.

2 BACKGROUND

Disease diagnosis accuracy using medical imaging depends on both
image- acquisition and interpretation. Image acquisition has improved
over the years, but image interpretation has only recently begun to
benefit from the advancement in computer technologies [7]. More-
over, image interpretation by humans is both labour-intensive and may
be subject to human bias. Therefore, computerized solutions such as
Image Processing and Deep learning are required to improve the diag-
nosis of diseases.

Many studies have been conducted to make use of advancements
in computer technologies to improve cancer diagnoses. Below a brief
overview is provided of common methods used for analysing and clas-
sifying medical images.

76

2.1 Statistical Methods
Statistical methods are based on probability distribution models and
generally include two categories; unsupervised and supervised. The
unsupervised methods use clustering algorithms such as K-means and
fuzzy clustering methods. The supervised approach needs training
data, test data, and data labelling. Probabilistic methods like nearest
neighbour classifier, decision trees and Bayesian classifier are included
in this category [15] [9].

2.2 Support Vector Machines
The Support Vector Machine (SVM) is an algorithm for data classifi-
cation and regression introduced by Vapnic in 1995. It is connected
with the statistical learning theory. The SVM algorithm is a learn-
ing machine; therefore it is based on training, testing and performance
evaluation [12].

2.3 Radiomics
Radiomics is a method that aims at extracting features from medical
images using data characterization algorithms through three steps: (1)
initial image pre-processing, which uses a variety of reconstruction al-
gorithms such as edge enhancement or contrast stretching, (2) image
segmentation by creating areas of interest in the images, (3) feature ex-
traction which includes two types of features; semantic features used
to describe areas of interest such as shape, location and agnostic fea-
tures used to capture heterogeneity through quantitative mathematical
descriptors [1].

2.4 Deep Learning
Deep Learning emerged in the computer vision field in late 2012 and
became very popular after a Deep Learning approach based on a CNN
won in a computer vision competition known worldwide [10]. Deep
Learning can be defined as a subset of machine learning: a Deep
Learning network is a form of an Artificial Neural Network (ANN),
with hidden layers between the input- and output layer. The meth-
ods of deep learning are representation-learning methods that contain
multiple levels of representation, obtained by creating simple but non-
linear modules that each transform the representation at one level into
a representation at a higher abstract level. This allows for complex
functions to be learned. A schematic overview of a typical neural net-
work can be seen in Figure 1.

Fig. 1. Deep neural networks are an extension of “regular” neural net-
works. In contrast to simple or shallow neural networks they use hidden
layers before passing the results to the output layer [2].

In the medical field deep learning is becoming the methodology of
choice when it comes to classifying radiological data [13]. The most
successful type of model for image classification and analysis to date
is a Convolutional Neural Network (CNN), which is due to its archi-
tecture - making the network both easy to train and more efficient [4].
The size of the CNN network varies, depending on two factors: the
learning task at hand and dataset characteristics. There are numer-
ous existing architectures that can be built upon, of which the most
commonly used in medical imaging are AlexNet, VGG, ResNet and
Inception [13].

3 METHODS

Three proposed methods of applying deep learning to improve on-
cology were selected [11][14][6]. In the following section, each

method is explained from a technical perspective, focusing on how
each method applies Deep Learning to make an analysis.

3.1 Deep Profiler

Authors Lou et al propose “Deep Profiler” in their paper [11], a multi-
task deep neural network. It consists of three fundamental parts: (1)
an encoder that uses a 3D convolutional neural network for extract-
ing imaging features and constructing a task-specific unique signature,
(2) a decoder for assessing handcrafted radiomic highlights and (3)
a task-specific neural network that generates picture signature for
treatment result prediction. See Figure 2.

The data used in the study contains 849 tumours corresponding to
patients from an internal study cohort and 95 tumours from an inde-
pendent validation cohort. To assess the performance of the Neural
Network, five-fold cross-validation was used, where the dataset was
split as 80% for training and 20% for testing with no overlap between
the folds. The model was then fine-tuned based on the performance of
the validation set. A total of 365 3D radiomics features were extracted
from the gross tumour volume.

The features can be grouped into intensity, geometry, texture, and
wavelet features. A nested five-fold cross-validation experiment was
also used for the examination of the performance of handcrafted ra-
diomics to predict local failure. The performance of the extracted
features is computed in the training set individually using the concor-
dance index (C-index) and only the best feature from each of the four
groups was selected. The features were combined in a multi-variable
model for predicting local failure. The complementary effect of the
image score with other clinical risk factors such as biological effective
dose (BED) and histological subtypes were also assessed. Fine and
Gray regression modelling was used to examine the effect of all fac-
tors on local failure. First, uni-variate analysis was used to confirm the
significance of each individual factor. The model was fit to a subset
of the data containing adenocarcinoma and squamous cell carcinoma
patients only to evaluate the effect of histological sub-type between
the two. This model was then used in combination with the Deep Pro-
filer score and BED, to predict failure and calibrate radiation dose for
modulating the risk of local failure.

3.2 3D rCNN model for xerostomia prediction

In the paper from Men et al [14], a model is proposed to accurately
predict xerostomia using a 3-dimensional residual convolutional neu-
ral network. The 3D rCNN model uses computed tomography plan-
ning, 3-dimensional dose distributions and contours as inputs. The
model outputs a toxicity probability.

The study included 784 patients enrolled in the Radiation Ther-
apy Oncology. The pre-processing of the data was done using a deep
learning-based auto-segmentation approach to contour the parotid and
submandibular glands in all patients that are included in this study.
Left-right flipping, auto-scaling, and random cropping techniques
were used to augment the data to avoid over-fitting. Both 3D images
and the corresponding 3D dose distributions were resampled to the
size of 2.00× 2.00 millimeters and cross-sectional thickness of 5.0
millimeters. A 3D rCNN model was trained for xerostomia prediction
where the input is 3D CT Images, 3D dose distribution, and contours
(parotid and submandibular glands) and the output is a binary value
that represents the prediction of xerostomia. The architecture of the
3D rCNN framework is depicted in Figure 3 and contains 23 layers
with the adoption of a residual network to improve the performance.
To avoid the early merging of longitude features, various layers follow
the last convolutional layer; a pooling layer, a fully connected layer
and finally, a softmax loss layer. The neural network contains approx-
imately 20 million weighted parameters.

To train the model, 80% of the data was used. Then, for validation,
the study used 10% of the data, with the remaining 10% used to test
and assess the performance of the proposed model. Model parameters
were fine-tuned during the training.

SC@RUG 2020 proceedings

77

Fig. 2. Deep Profiler study design and neural network architecture. Both a CNN and a regression are used and in combination produce iGray [11].

Fig. 3. The flowchart for predicting xerostomia using the 3-dimensional residual convolutional neural network model [11].

3.3 CNN for H&N cancer outcome prediction
In the work from Diamant et al [6], the authors propose the use of
a Convolutional Neural Network as the main architecture decision to
create treatment outcome predictions in head & neck (H&N) cancers.
The CNN used is divided up in four separate parts: (1) convolution,
(2) non-linearity, (3) pooling and (4) classification. Combining these
several operations, a layered structure is obtained: data passes through
the pipeline in a predictable manner, where the first (convolutional)
layer receives the raw image input.

The convolutional layer will learn and extract features from the
given input data. The network uses a certain number of filters in the
first layer, which will apply a ’sliding window’ to the input data. This
process will cause the 2-dimensional input data to take on another di-
mension, which contains the convoluted versions of the image. The
number of filters in this first network layer can be of various sizes (for
example, one could use 64 filters), influencing the amount of image
features the network is able to extract from novel images.

Secondly, the non-linearity layer is applied. A choice for a desirable
operation is to be made in order to ’activate’ the data produced by the
convolutional layer-mapping it to suitable output values to model real-
world data accurately. This paper uses a parametrized rectified linear
unit (PReLU), which slightly differs from the popular rectified linear
unit (ReLU) in the way that it allows for some fraction of negative
input values to pass through the network.

Thirdly, the pooling operation is applied. Pooling allows for re-
ducing the overall size of its input. Because the given input data can
take a great spatial size after the convolutional operation, in order to
retain computational efficiency, a filter is applied to reduce the high
dimensionality. Also, image features are still bound to some specific
location on the data - pooling helps make the data location-invariant.
This paper uses a method called
enquotemax-pooling, specifically. It works by taking the maximum
value of every small 4 by 4 input data patch and replacing the entire
patch by this maximum value.

Finally, the last classification layer is applied. The constructed fea-
ture maps that are output from the previous layers are taken and are
combined using some sigmoidal activation function [8]. The classifier
is then able to generate a single output value, which in the case of this
paper is an estimation of pre-treatment risk in cancer patients under-
going radiotherapy treatment. The entire CNN network architecture is
depicted in Figure 4.

The way the CNN was designed promotes generalization because

of its simple architecture. As well, the risk of over-fitting is reduced
by not making the model overly complex. A notable remark is to be
made of the input layer size, which is 512× 512, meaning that some
CT image of standard format can be processed by the network with-
out large amounts of pre-processing. In the subsequent layers more
convolutional blocks are presented, with each block containing a con-
volutional layer, max-pooling layer and a PReLU layer. Every added
block makes for more ability in the network to uncover more complex
features - which is exactly the power of a CNN compared to a human:
the CNN can delve ’deeper’ into the image, discovering features that
are invisible to a human. After these three convolutional layers two
fully connected layers are presented, with lastly a PReLU.

4 STRENGTHS AND WEAKNESSES

Various strengths and weaknesses of every method are explored and
the effectiveness of the method as described in the paper itself; often
assessed in a paper by comparing its own results to competing existing
methods using the same dataset.

4.1 Deep Profiler

The results obtained from the study show that Deep Profiler can ac-
curately predict treatment failures across diverse clinical settings and
distinct CT scanners. The multivariate models that included Deep
Profiler and clinical variables proved to be superior to the classical
radiomics which disregards image information outside of the gross tu-
mour volume and the 3D volume, with C-index score of 0.71 (95% CI
0.67-0.77) compared to the classical radiomics regularisation with C-
index score of 0·68 (0·63–0·74) and 3D volume with C-index score of
0·66 (0·60–0·71). Detailed results are depicted in Table 1. The agree-
ment between the observed outcomes and the multivariable model with
iGray and BED was examined by calculating calibration curves. The
curve was obtained by plotting the average predicted probability at
1, 2, or 3 years after radiation treatment versus cumulative incidence
curve estimates of the actual outcome. The resulting curve shows that
the model can accurately predict the outcome of the treatment. As
shown in Figure 5.

The advantages of the method include implementing a deep neu-
ral network, Deep Profiler, that combines both CT images and clinical
data to predict failure for patients treated with radiotherapy. The de-
rived iGray can be used to provide a patient-specific dose that reduces
the probability of treatment failure to below 5%. Deep Profiler is also

Deep learning in oncology for predicting cancer radiotherapy . . . – Jeroen G. S. Overschie and Hichem Bouakaz

78

Fig. 4. CNN network architecture for making a pre-treatment risk assessment, given some imaging modality input image, e.g. a Computed
Tomography image [6].

C-index p value
Deep Profiler 0.71 1 (ref)
2-D CT size 0.61 2.05×10−22

Maximum 3D diameter 0.66 1.06×10−20

Three-dimensional volume 0.67 9.78×10−24

Classical radiomics
(feature selection)

0.65 4.23×10−25

Classical radiomics
(regularisation)

0.68 1.18×10−10

Table 1. Deep Profiler prognostic performance on various models. Met-
ric used is the Concordance-index, which is a generic index for validat-
ing prediction ability of some survival model. Compared predictions all
use the same patient cohort. The proposed learning-based Deep Pro-
filer framework is superior to classical radiomics features, with a C-index
score of 0.71, compared to lower values [11].

superior to deep learning used alone due to the combination of CT-
images and clinical data to derive an accurate iGray which estimates
the biologically effective dose required to achieve local control. It be-
came apparent in the study that voxels which are most deterministic
for treatment failure are located within the physician-contoured vol-
umes (gross tumour volumes or planning target volumes). Such voxels
are completely ignored in the classical radiomics. The authors of the
paper have concluded that predictive features can be learned from CT-
Images. Additionally, the obtained results have many other clinical
implications. Deep Profiler could find image-distinct subpopulations
with differential sensitivity to radiotherapy. It provides an integrated
method that combines images and established clinical variables to in-
dividualize radiation dose.

However, the study has limitations. Firstly, the dataset presents sev-
eral limitations; (1) the small size of the dataset used in the study and
(2) the lack of stratification of the dataset into more homogeneous pop-
ulations such as cancer subtypes, clinical stage and the use of systemic
adjuvant therapy. Secondly, manual annotation is used which could
bias feature extraction. Thirdly, the potential causes of bias that are
not fully accounted for and the explicit population heterogeneity in
the datasets. Finally, the study did not take into account normal tissue
toxicity.

4.2 3D rCNN model for xerostomia prediction

The aim of the paper is to check whether using a 3-dimensional (3D)
residual neural network (rCNN) can be used to guide radiation therapy
through predicting xerostomia to reduce toxicity that results in most
of the times Xerostomia. To check the effectiveness of the combined
model the results were compared to both a 3D rCNN without contour,

Fig. 5. Model performance and the scalability of the deep neural net-
work. Figure (a) on the left shows the estimated vs observed local fail-
ure, where estimations were done using iGray and BED (biologically
effective dose). A black line represents a reference perfect score. The
length of any bar depicts the 95% CI level. Figure (b) on the right shows
model performance using the full 100% of the data and using only a
subset of 60%, illustrating potential model scalability [11].

a 3D rCNN model without CT-images, a 3D rCNN model without the
dose. Additionally, the model was compared to two classical logis-
tic regression models where one used clinical variables and the other
did not. The results showed the superiority of the combined rCNN
model AUC score 0.84 (0.74-0.91) to the 3D rCNN models without
one of the three inputs (CT-images 0.78 (0.67-0.88), contours AUC
score 0.82 (0.72-0.90), dose AUC score 0.70 (0.58-0.80)). The com-
bined rCNN model was also superior to both logistic regression model
without clinical data (AUC score of 0.84 vs 0.68) and logistic regres-
sion model with the clinical data(AUC score of 0.84 vs 0.74). Table 2
shows the results in detail.

Method Acc F-score AUC (95% CI)
3D rCNN 0.76 0.7 0.84 (0.74-0.91)
3D rCNN without contour 0.74 0.68 0.82 (0.72-0.90)
3D rCNN without CT 0.73 0.69 0.78 (0.67-0.88)
3D rCNN without dose 0.65 0.56 0.70 (0.58-0.80)
LR without clinical vars 0.56 0.57 0.68 (0.56-0.80)
LR with clinical vars 0.64 0.6 0.74 (0.64-0.84)

Table 2. Results of xerostomia prediction obtained after applying differ-
ent methods on the test set. Abbreviations: 3D rCNN Z 3-dimensional
residual convolutional neural network; AUC Z area under the curve; CI Z
confidence interval; CT Z. computed tomography; LR Z logistic regres-
sion [14].

Advantages of the method proposed in the paper include the aim to
introduce a fully automatic framework. Compared to other studies that

SC@RUG 2020 proceedings

79

Method DL
architecture

Cohort
size

Tumor
location

Segmentation Parameters Model output

Diamant et al.
(2019) [6]

DL 2D CNN 784 Head and Neck Pre-segmented CT images Probabilities for DM,
LRF, OS

Men et al.
(2019) [14]

DL 3D rCNN 300 Head and Neck Automatic CT images,
Contours,
Radiotherapy
Dose
Distribution

Toxicity probability

Lou et al.
(2019) [11]

Radiomics
+ DL + RM

3D CNN 849 Lungs Hand-crafted CT images,
Clinical
variables

Local failure proba-
bility, recommended
dosage

Table 3. Comparison of the methods used in the three papers. Abbreviations used: DL = Deep Learning; RM = Regression Model ; DM = Distant
Metastasis; LRF = Loco-Regional Failure; OS = Overall survival.

use time-consuming handcrafted feature extractors, a deep-learning-
based prediction model that can extract features in an efficient way was
used. Using auto-segmentation and contouring has another advantage
which is the potential to reduce inter- and intra-observer variations
in the delineation. The study also provided a comparison between
using 3D CT planning images 3D rCNN without contour, 3D rCNN
without CT and 3D rCNN without dose, this comparison shows that
high radiation therapy dose is the main cause of xerostomia since the
model without the dose performed the worst 0.70 AUC score (0.58-
0.80). Compared to the LR model the 3D rCNN model could extract
both radiomic and dosiomic features automatically.

Disadvantages of this study include the need for large datasets to
train deep neural networks. Additionally, the study does not include
clinical variables which can play an important role in the toxicity pro-
file.

4.3 CNN for H&N cancer outcome prediction
In this paper, a hypothesis is set that using CNNs could enhance the
performance of traditional radiomics. The paper compared its method
with a traditional radiomic framework applied to the same dataset or
’patient cohort’, both in predicting Distant Metastasis. Given the same
prediction target, the discussed conventional method [19] achieves an
AUC score of 0.86 whilst the newly proposed method using a CNN
achieves a score of 0.88. Better results are obtained when combining
the newly proposed method with the conventional method. An AUC
score of 0.92 is achieved. The combined model was only implemented
for DM, which is because of the inability for the traditional radiomic
approach to find strong individual features for LRF and OS. See all
results in Table 4.

AUC (Area Under the Curve)
Central
slice

Superior
slice

Inferior
slice

Vallières
et al.

Combined
model AUC

DM 0.88 0.88 0.88 0.86 0.92
LRF 0.65 0.63 0.64 0.50 -
OS 0.70 0.68 0.67 0.65

Table 4. Results on validation set from Diamant et al [6]. Both Vallières
et al [19] and Diamant et al tested on the same patient cohort. Left
column abbreviations represent, respectively, DM = Distant Metastasis,
LRF = Loco-regional failure, OS = Overall survival.

Advantages of this method are said to be the fact that the network
is trained de novo. This means that no secondary machine learning
algorithm is used and thus no need for using transfer learning is re-
quired. Also, little feature engineering is required in the model; the
algorithm is given the full set of un-altered pixel data of the tumour.
In this way, no human is telling the algorithm which features are of
relevance, rather, the algorithm figures this out itself and reports back
to the user. Also, the algorithm is able to explicitly recognize radiomic
features, whilst still keeping the model relatively easily interpretable.

Disadvantages of the method include the fact that CT images could
have been cropped in such a way, that only the tumour itself would be
in the main field of view. Such, many irrelevant voxels are removed.
However, this directly opposes a primary method advantage: adding
extra preprocessing steps would add much complexity to the frame-
work, contradicting the advantage of keeping the pipeline relatively
simple and free of complex feature selection steps. Also, more in-
formation could be added. The dimensionality of the CT-scan output
imaging was possibly not exploited to its full potential: CT imaging
contains 3 dimensions, which, if considered in its entirety, might reveal
extra information. Another potentially useful source of information to
add is a patient’s positron emission tomography (PET) image. Val-
lieres et al [19] found PET information to be of additional predictive
power, so considering this information might improve prediction per-
formance. Another disadvantage mentioned is the fact that the frame-
work only considered the pre-segmented gross tumour volume as in-
put, instead of including all tissue including the surrounding tissue,
removing the need for location invariance. Taking the surrounding tis-
sue into consideration could also be of additional value with respect
to the prediction. Finally, the combination approach was quite simple:
logistic regression was performed to combine the traditional radiomics
approach with the newly proposed CNN method. More sophisticated
methods (transfer learning) could have been explored to combine the
two different approaches, possibly improving performance further.

5 COMPARISON

In previous sections, information about each paper’s method and its
strengths and weaknesses was given. In this section, this information
is put together to distil essential findings. Main differences and simi-
larities are summarized in Table 3.

As depicted in the table, the selected methods have different model
outputs. Whereas Men et al estimates the toxicity level to predict xe-
rostomia, Diamant et al predict the outcome of radiotherapy through
estimating the probability of Distant Metastasis, Loco-Regional Fail-
ure and Overall Survival. Both Men et al and Diamant et al prediction
is for Head and Neck cancer. Lou et al, contrarily, predicts the outcome
of radiotherapy for Lung cancer through estimating the probability of
Local Failure and computes a recommended radiotherapy treatment
dosage using a Regression Model, as depicted in the ’Method’ column
of the table.

Segmentation methods vary across the examined papers. Diamant
et al use a dataset where the tumour volume is already segmented, but
Lou et al uses data that depended on human experts to segment the
volumes manually. As discussed in their paper, handcrafted segmen-
tation is labour intensive and subjected to human bias. The automatic
segmentation proposed in Men et al, however, is mentioned as an im-
provement over handcrafted segmentation.

Different Deep Learning architectures were used; Diamant et al
used a 2-dimensional CNN approach, whereas the other two use 3-
dimensional approaches. Choosing between a 2D or 3D CNN archi-
tecture, one should consider the classical trade-off between accuracy
and speed: considering more dimensions requires more computational

Deep learning in oncology for predicting cancer radiotherapy . . . – Jeroen G. S. Overschie and Hichem Bouakaz

80

power to train the model. Whilst Diamant et al only considers three
2-dimensional slices of the tumour volume - which results in consid-
erably fewer data to process than the entire 3-dimensional volume.
However, Lou et al mention that considering the entire 3-dimensional
volume could have extra predictive power, resulting in possibly more
accurate predictions.

Model parameters are constructed using the method’s data sources,
the main one being CT images for all papers. The additional parameter
Radiotherapy Dose Distribution, used in Men et al, is primarily used to
complement the process of predicting toxicity probability, which is its
model output. In Lou et al, clinical variables are used to assist recom-
mended dosage prediction. Men et al, however, no clinical variables
are used, but an argumentation according to their results is provided,
that adding in clinical variables could improve accuracy.

All studies conducted their experiments on different patient cohorts,
as can be seen in the table. Accordingly, all paper mentioned future
work improvements related to their dataset. Lou et al mentioned their
dataset to be complete and of sufficient size, but their validation co-
hort limited. Men et al argued that their 3-dimensional CNN approach
requires large datasets to function optimally, which is a common chal-
lenge in Deep Learning.

6 CONCLUSION

Given various methods, applying Deep Learning to predict cancer ra-
diotherapy treatment outcome has promising results compared to tra-
ditional methods. Opportunities lie in the use of automated segmen-
tation, the use of the full 3-dimensional volume using 3D CNN and
mixing in more data sources alongside the CT image, like clinical data.
Limitations are increased demands for data processing power and large
dataset sizes, which not all institutions possess. Therefore, critical to
further improving prediction power is the willingness of researchers
and institutions to openly share large datasets.

7 FUTURE WORK

Several steps can be taken for further improvements based on this re-
search. Relevant points of improvements are discussed below.

First of all, a larger synthesis of research material could be made.
In this paper, three methods for applying deep learning in the field of
oncology are described and eventually compared. A possible improve-
ment would be to include more sources: since a primary goal of our
research is to outline the latest developments of utilizing deep learning
in this field, it is reasonable to include more methods available to get
a better overview on the subject matter. Supporting this, there indeed
exist many more papers in which similar topics were explored [3] [18].

Secondly, a comparison could be made of work that is more related
to each other. The three chosen methods all have different research
goals and aim to make a different prediction using their networks. This
makes the methods hard to objectively compare; primarily, a compar-
ison is made between each method’s individual effectiveness given its
problem context. An improvement would be to compare papers that
use the same dataset and attempt to predict the same attribute.

Thirdly, validation could have been performed on the paper results.
This could have been done by using the same dataset for the three
papers and compare the results. In such a way, one is able to reproduce
the same charts that were supplied in the papers, thereby validating its
scientific integrity.

Lastly, another possible improvement is to further complete the use-
fulness of Deep Learning in Oncology by comparing the novel meth-
ods of prediction to more traditional ways of performing the same pre-
dictions: by using conventional Machine Learning or some form of
assessment using only clinical data. Only then, by also examining a
large spectrum of methods including Deep Learning, can the effective-
ness of Deep Learning be truly assessed effectively.

ACKNOWLEDGEMENTS

We would like to thank E. (Estefanı́a) Talavera Martı́nez for her help
in finding suitable source papers and her constructive feedback in the
review - we also like to thank the additional peer reviewers for their
time and energy.

REFERENCES

[1] Radiomics. https://radiopaedia.org/articles/
radiomics. Accessed: 2020-03-15.

[2] The ultimate guide to ai in radiolog. https://www.quantib.com/
the-ultimate-guide-to-ai-in-radiology. Accessed:
2020-02-20.

[3] J.-E. Bibault, P. Giraud, and A. Burgun. Big data and machine learning in
radiation oncology: state of the art and future prospects. Cancer letters,
382(1):110–117, 2016.

[4] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep
neural network models for practical applications. arXiv preprint
arXiv:1605.07678, 2016.

[5] D. P. Dearnaley, V. S. Khoo, A. R. Norman, L. Meyer, A. Nahum, D. Tait,
J. Yarnold, and A. Horwich. Comparison of radiation side-effects of con-
formal and conventional radiotherapy in prostate cancer: a randomised
trial. The Lancet, 353(9149):267–272, 1999.

[6] A. Diamant, A. Chatterjee, M. Vallières, G. Shenouda, and J. Seuntjens.
Deep learning in head & neck cancer outcome prediction. Scientific re-
ports, 9(1):1–10, 2019.

[7] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. Aerts.
Artificial intelligence in radiology. Nature Reviews Cancer, 18(8):500–
510, 2018.

[8] B. Karlik and A. V. Olgac. Performance analysis of various activation
functions in generalized mlp architectures of neural networks. Interna-
tional Journal of Artificial Intelligence and Expert Systems, 1(4):111–
122, 2011.

[9] T. A. Lashari and R. Ibrahim. A framework for medical image classifica-
tion using soft set. 2013.

[10] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition:
A convolutional neural-network approach. IEEE transactions on neural
networks, 8(1):98–113, 1997.

[11] B. Lou, S. Doken, T. Zhuang, D. Wingerter, M. Gidwani, N. Mistry,
L. Ladic, A. Kamen, and M. E. Abazeed. An image-based deep learning
framework for individualising radiotherapy dose: a retrospective analy-
sis of outcome prediction. The Lancet Digital Health, 1(3):e136–e147,
2019.

[12] I. G. Maglogiannis and E. P. Zafiropoulos. Characterization of digital
medical images utilizing support vector machines. BMC Medical Infor-
matics and Decision Making, 4(1):4, 2004.

[13] M. A. Mazurowski, M. Buda, A. Saha, and M. R. Bashir. Deep learning in
radiology: An overview of the concepts and a survey of the state of the art
with focus on mri. Journal of magnetic resonance imaging, 49(4):939–
954, 2019.

[14] K. Men, H. Geng, H. Zhong, Y. Fan, A. Lin, and Y. Xiao. A deep learn-
ing model for predicting xerostomia due to radiation therapy for head
and neck squamous cell carcinoma in the rtog 0522 clinical trial. Inter-
national Journal of Radiation Oncology* Biology* Physics, 105(2):440–
447, 2019.

[15] E. Miranda, M. Aryuni, and E. Irwansyah. A survey of medical image
classification techniques. In 2016 International Conference on Informa-
tion Management and Technology (ICIMTech), pages 56–61. IEEE, 2016.

[16] V. Ratnaparkhe, R. Manthalkar, and Y. Joshi. Texture characterization of
ct images based on ridgelet transform. ICGST-GVIP, 8(5):43–50, 2009.

[17] W. Schroth, L. Antoniadou, P. Fritz, M. Schwab, T. Muerdter, U. M.
Zanger, W. Simon, M. Eichelbaum, and H. Brauch. Breast cancer treat-
ment outcome with adjuvant tamoxifen relative to patient [...] genotypes.
Journal of Clinical Oncology, 25(33):5187–5193, 2007.

[18] S. Trebeschi, J. J. van Griethuysen, D. M. Lambregts, M. J. Lahaye,
C. Parmar, F. C. Bakers, N. H. Peters, R. G. Beets-Tan, and H. J. Aerts.
Deep learning for fully-automated localization and segmentation of rectal
cancer on multiparametric mr. Scientific reports, 7(1):1–9, 2017.

[19] M. Vallières, E. Kay-Rivest, L. J. Perrin, X. Liem, C. Furstoss, H. J.
Aerts, N. Khaouam, P. F. Nguyen-Tan, C.-S. Wang, K. Sultanem, et al.
Radiomics strategies for risk assessment of tumour failure in head-and-
neck cancer. Scientific reports, 7(1):1–14, 2017.

[20] J. Xu, K. D. Kochanek, S. L. Murphy, and B. Tejada-Vera. Deaths: fi-
nal data for 2007. National vital statistics reports: from the Centers for
Disease Control and Prevention, National Center for Health Statistics,
National Vital Statistics System, 58(19):1–19, 2010.

[21] A. Yaromina, M. Krause, and M. Baumann. Individualization of cancer
treatment from radiotherapy perspective. Molecular oncology, 6(2):211–
221, 2012.

SC@RUG 2020 proceedings

81

An overview of methods used for automatic detection of social
interaction in visual material.

Alessandro Pianese and Tanja de Vries

Abstract— Automatic detection of social interaction is a popular field of research due to the broad range of applications. From mental
health to surveillance systems. Moreover, it is used to automatically detect the special moments that should be kept in a day long
personal video. This paper goes over the main common methods used in scientific literature to detect social interactions in visual
material. We have found that the main structure of an automatic recogniser is usually very similar between models, however, they
differ a lot in the specific implementation.

Index Terms—Computer vision, social interaction detection, recurrent neural network.

1 INTRODUCTION

Engaging in social interactions is one of the basic needs of individuals
and one of the few activities that we tend to perform on a regular basis.
In this process we interact and react to the people (and the environ-
ment) that surrounds us. The first scientific definition of this process
was given by Erving Goffman. [12] Automatic detection of social in-
teraction has a lot of applications, and as a result there is an increasing
scientific interest in the topic. [11]

One of the earliest applications of understanding social behaviour
in computer science were automated surveillance videos. These sys-
tems have to detect, as soon as possible, threatening behaviour. This
is however a very difficult task for which a lot of social information is
needed. [9]

Another kind of application is in the medical field. The frequency
and diversity of social interactions can say a lot about the physical and
mental health of the people partaking in it. [16] Thus, an application
is for example the analysis of a series of pictures from the life of a
person with a mental disorder. This could help psychologist to get a
better understanding about the mental disorder. Moreover, it could be
the basis of a method to monitor progress of a treatment.

Lastly, people generally want to keep pictures of special moments.
However, taking pictures all day distracts from the special moment.
Filming the whole day captures the special moments, but also a lot of
boring moments. Therefore, research is done on separating the special
moments from the moments one does not want to keep. Fathi et all.
believe that a frame containing a social interaction is a good indicator
for the frame to be worth keeping. [10]

1.1 State of the field
In this subsection an overview is given of the developments in the field
of automatic detection of social interaction.

Setti et al.[15] did research on detecting social interactions in im-
ages with a similar point of view as surveillance cameras. An example
picture is given in Figure 1. Since the camera has a static position,
a lot of parameters, such as illumination, are constant. This gives a
relatively easy setting to recognize and track individuals and groups.
However, due to the camera being external, the people in the picture
might be partially hidden behind other people. The researchers used
the F-formation to determine interacting groups. The F-formation as-
sumes that people that are close and facing each other are interacting
with each other, more information about this method is given in Sec-
tion 2.4.1. The researches focused on differentiating between different
kind of groups with this technique. However, due to the nature of the

• Alessandro Pianese is a CS master student at the RUG,
E-mail: a.pianese@student.rug.nl.

• Tanja de Vries is a CS master student at the RUG,
E-mail: t.r.de.vries.2@student.rug.nl.

Fig. 1. A picture from an external point of view used in [15]. There are
multiple groups of socially interacting people visible.

data, this method was not able to gain insights of the social interaction
pattern of a single person.

In 2012, Cristani et al. [9] did research on images from surveillance
cameras. The authors discuss the idea of social signal processing tech-
niques on surveillance footage to identifying threatening behaviours.
They report that the elements that usually deliver the most useful in-
formation are, among others, gestures and postures, and face and gaze
direction. Thus, one of their conclusions is that social interaction de-
tection should not only be approached from a computer vision and im-
age processing point of view but also from a social signal processing
perspective.

With the recent increasing availability of wearable cameras the op-
tion to revisit the problem of detecting social interaction has drawn the
attention of researchers.[10] Detection of social interaction in egocen-
tric pictures is very different from the external surveillance cameras
approach. This is mostly due to the fact that interactions with the
wearer have to be found while the wearer itself is not in the image. A
more elaborate discussion on the different aspects of point of view of
data is given in in Section 2.1.

Aghaei et al. made a model based on the F-formation, using ego-
centric photo series. [4] An example of the data they used is given
in Figure 2. They found this model did not perform well enough in
crowded places where people stand too close to one another without
interacting such as in amusement parks. Therefore, they improved
their model using emotions recognition. [1] In this model a neutral ex-
pression decreases the probability of an individual partaking in a social
interaction with the camera wearer. This can be seen in Figure 3.

82

Fig. 2. This is an example of an egocentric photo series, from the
EgoSocialStyle data set[2], displaying a social interaction at the top and
no social interaction at the bottom.

Fig. 3. This is an example where emotion is used for the detection of
social interaction, by Aghaei et al. [2]

1.2 Overview of paper
In this paper we discuss a selection of the approaches that are used
in the field. We have tried to give a broad overview of the available
methods. Most papers use the same basic structure, so in Section 2
the methods are split in the 5 basic steps. For each step the process
is explained and some examples of specific methods are given. In
Section 3 a discussion is given on the combination of methods and
some of the results are shown. Lastly, in Section 4 we give some
concluding statements.

2 METHODS

In general an automatic social interaction detector consists of 4 main
steps: person recognition, person tracking, group detection and classi-
fication. However, the specific methods used to implement these steps
differ greatly between research groups. It depends on the goal of the
project what methods give the needed information. Moreover, the kind
of data that is used has a large impact on the process. In this section
we describe some of the methods that are used in this field. We first
discuss the available data sets and then we discuss the methods that
are used for each main step.

2.1 Data set
The choice of data determines a lot about the methods used. More-
over, it depends on the goal of the project what data is best to use. We
already shortly mentioned the difference between pictures from exter-
nal and first person view. Another point of attention is the amount and
quality of frames, varying from one picture to high quality video. In
this section we go over the choices that should be made.

As explained in the introduction, in first-person view the interac-
tions with the wearer have to be found even though the wearer itself

is not in the image. However, users in a social interaction naturally
are oriented towards the others in the interaction. Therefore, the ori-
entation of the wearer is known, but it might be more uncertain than
the orientation of the other persons. Moreover, the data will usually
contain the interacting people in focus and with more details than in
the external view data. An egocentric viewpoint also brings new chal-
lenges due to the camera moving. These sometimes abrupt movements
can result in quick changing illumination and noise.

When we look at literature regarding this topic, there are two pos-
sibilities for first person camera placing, either on the chest or on the
head. A chest mounted camera is less distracting for the people in the
interaction and has less issues with abrupt movement, since the head
is usually changing orientation more often. However, a head mounted
camera captures the facing direction of the head instead of body, which
might give better results when the other persons are to the side rather
than in front of the wearer.

Lastly, the data ranges from a single picture to high quality video.
A high quality video gives the most information, but more information
usually includes more noise as well. So a higher quality does not au-
tomatically give better results. For recording a longer time, a day or
even a month, it is more suitable to use a low frame rate photo series.

2.1.1 Available data sets
In this section we will go in more detail for the specific data sets that
are mentioned in this paper.

Firstly, A pair of data sets that is publicly available for these opera-
tions is the ECO-Group and ECO-HPE data set. This is a first-person
view data set that was produced to be employed in [6] as a testing
asset. The ECO-Group data set contains high frame video of social
interactions in various environments. All footage has been produced
from a head mounted camera and, as a results, produced video with
substantial background clutter and noise. The ECO-HPE data set, on
top of the previous one, adds head pose estimation for all faces found
in the frames.

Another first-person view dataset is the EgoSocialStyle set em-
ployed in [1]. The aim of this dataset is different since they replaced
high quality videos with low frame rate videos. The authors strived to
be able to automatically recognise people partaking in social interac-
tions with only a subset of the information previously used. This time
the camera was programmed to take pictures once every thirty seconds
and was attached to the chest of the person.

Lastly, the authors in [10] made a data set in an amusement park. A
subset of 8 of a group of 25 people was wearing a first-person head-
mounted camera to record 3 days. This results in a 15 fps video of
more than 42 hours. Thus, this dataset contains a lot of noise. More-
over, the frames usually consist of a lot of people.

2.2 Person recognition
The first step needed for the detection of social interaction in streams
of images is the recognition of people in said images. This problem
can be traced back to object recognition. As described in [19], some
of the most common issues in the field are:

• The loss of information due to the 2D projection on the image
plane of the 3D world.

• Changes in the scene illumination

• Abrupt changes in the motion of the object

• The usual noise in images

Moreover, these points do not allow for real-time processing of im-
ages. Usually for frameworks to obtain results in a reasonable amount
of time some assumptions are made. For example, one of the most
common assumption is to expect the image in which the object is rep-
resented to have an even illumination.

The object recognition pipeline start from identifying contours in
images. This can be done by several techniques from the image pro-
cessing field such as segmentation or point detector. In segmenta-
tion, an image is divided into perceptually similar region[19] based on

SC@RUG 2020 proceedings

83

Fig. 4. These are example tracklets found in a series of frames by Alletto et al. [6]. The red box displays the seed and the corresponding boxes are
shown in green.

shapes and intensity levels of the image. This way, objects that stick
out from the background can be easily picked up. Another approach is
to use point detectors. With points detectors we want to identify cer-
tain points in images. These points should have some specific features
such as constant illumination and invariance to the camera viewpoint.
Comparing two images with said technique will return a number of
matches that stands for the number of similar points found in both im-
ages. Points detectors may be used to recognize shapes in both images
and video.

2.2.1 Deformable model
One of the methods for automatic object recognition is deformable
models. With the term deformable models, we indicate a group of al-
gorithms and techniques that aims to model the variability of a certain
class of objects[5], heads and/or human bodies in our case. In [7],
the authors give examples of how these deformable models are usu-
ally employed. One of the most widespread type of models, is the
Point Distribute Model. The PDM represents shapes as a collection of
landmark points that are deemed important. This means that certain
pixels define a shape that is capable of describing the object we want
to recognize. Deformable models are usually characterized by certain
parameters that dictate how the algorithm has to approach the model.
In [18], the authors propose an algorithm that produce a collection of
pixels, called snake, that enclose the object of interest. In this use
case, the parameters employed define the tension, rigidity and external
forces of the snakes.

2.3 Person Tracking
If more than one picture are used to detect social interaction, the track-
ing of faces along the different frames is a fundamental step in detect-
ing social interaction. It is relatively easy to do so in a video from an
external camera with a static field of view. However, when using an
egocentric camera that gives abrupt changes in both field of view and
illumination, the problem is much harder to solve. There are multiple
methods available to track persons, we go in dept with one of these
methods by Aghaei et al.[3]

These authors constructed a tracker that can be used on the EgoSo-
cialStyle dataset. The challenge of this dataset is especially the low
frame rate of 2 fpm. Even in the case of no movement noise, having
30 seconds between every picture has as a result that the people in the
picture have enough time to be moving around. This increases the pos-
sibility that persons in a picture are in a very different spot, then they
were in the previous picture.

Since the pictures are in first person view, the people captured in
the picture are close. Therefore, the authors decided to track persons
only based on their face rather than on their whole body which might
not be in the picture. They perform a 4 step tracking and identification
process.

Seed and tracklet generation. A convolutional neural network is
used to divide the data into segments based on global fea-
tures. Each segment is individually evaluated for relevance, it
is checked to contains trackable persons. In fact, a certain seg-
ment is kept if the number of trackable faces is at least half of
the number of frames in the segment. After selection, bounding
boxes surrounding the faces, called seeds, are collected. For each
seed a deep matching network is used to find the corresponding

boxes in the other pictures. For this the already found boxes are
matched, but it also searches for faces in the neighbourhood of
the seed. Thus, it is possible that a face missed in the last stage
is nonetheless found at this step in the process.
In Figure 4 an example segment is shown with a seed in red
and the corresponding boxes in green. This set of boxes to-
gether is defined to be a tracklet. In fact, a tracklet is defined
as T i = {t i

b....t
i
s....t

i
e} where t i

k is the bounding box correspond-
ing to the seed i and frame k. The seed is found in frame s and
the sub-indexes b and e give the frames where it appears first and
last, respectively.

Grouping tracklets into bag-of-tracklets. There are multiple track-
lets belonging to the same person. Therefore the next step is to
group the tracklets and construct one unique extended-bag-of-
tracklets (eBoT), denoted by T, for every person in the segment.
This is done by computing the similarity of a tracklet to the eBoT.
If they are found to be similar the tracklet is added to the eBoT.
In the end all tracklets in an eBoT should correspond to the same
person. However, there can be some unreliable eBoTs that do
not correspond to a person. To minimize the unreliable eBoTs,
an eBoT is removed if the ratio between tracklets in the eBoT
and frames in the sequence is too low.

Prototype extraction. Since a tracklet is constructed from every
found seed there is a lot of overlap in the bounding boxes
in an eBoT. Therefore, in this step, eBoTs are used to con-
struct prototype tracklets that should represent all tracklets in
the eBoT. The prototype tracklet consists of one bounding box
per frame. So, for each frame, the bounding boxes in all track-
lets in the eBoT are collected. The prototype bounding boxes
are then chosen such that they have maximum intersection with
the bounding boxes in the collection. The computed prototype
T̂ = {t̂ i

b....t̂
i
s....t̂

i
e} should be able to identify the face in all frames.

However, it also selects a best bounding box when the face is not
present in the frame.

Occlusion treatment. In the last step, occlusions and unreliable de-
tections are identified and removed. To do so, the authors de-
fine a function Λ that associates the deep matching score of each
bounding box to their respective seed. This function is used to
calculate the confidence level of a frame k as

Ck =
1
|T|

|T|
∑
i=1

Λ(t i
s, t

i
k),

where t i
s is the seed of the ith eBoT tracklet. The variable t i

k is
the bounding box at frame k and |T| is the number of frames
in the tracklet. This function correctly shows a confidence drop
by frames with missing faces and occlusions. A threshold is set
on the confidence level. Whenever the confidence of a frame is
below this threshold, the frame is removed.

2.4 Groups identification
Once people are identified in streams of images, we can move on to
actually make use of this information and find the potential groups in
an image. In this sub section we will reports some of the most used

An overview of methods used for automatic detection of social interaction. . . – Alessandro Pianese and Tanja de Vries

84

Fig. 5. The three spaces in F-formation. The interaction persons are
positioned in the p-space. [15]

Fig. 6. This is an example of F-formation by Aghaei et al.[4]. The bird-
view model at the right shows the F-formation of the scene at the left.
From this formation we conclude that the wearer is in a social interaction
with the person in pink.

methods in the field starting with the Facing Formation which is often
the starting point for all of these methods.

2.4.1 The Facing Formation

Once involved in a social interaction, there is a natural formation peo-
ple will take position in. Kendon was the first to make a model of
this formation, defined to be the Facing Formation, abbreviated to F-
formation [13]. Humans in a social interaction all look inwards a void
in the middle of the group. In other words, their orientation is towards
the other people in the interaction. Moreover, they will have an intu-
itive distance between each other.

More specifically, the F-formation consists of three spaces as shown
in Figure 5. Firstly, the p-space, which is the space consisting of the
interacting people. Everyone participating in the interaction has easy
and equal access to the empty space between them, called the o-space.
Lastly, the interacting people stand with the back to the outside world.
People not interaction with the group are not accepted in the p-space,
they are positioned in the r-space.

Kendon [14] defines the F-formation as follows:

An F-formation arises whenever two or more people sustain a
spatial and orientational relationship in which the space between
them is one to which they have equal, direct, and exclusive access.

The F-formation is used to detect groups that are socially interact-
ing. More specifically, it is assumed that interacting people and peo-
ple standing in F-formation are more or less interchangeable. So, if a
group is found to stand in F-formation one can conclude they are in-
teracting. Often, as mentioned before, researchers use the F-formation
as a first selection and build their research upon it. To find if a group
of people are in F-formation the orientation of each person and the
distance compared to the group are computed. If they are oriented to-
wards each other and they are close together, it is concluded that the
group is in F-formation.

The F-formation is used by Aghaei et al.[4]. In this article orien-
tation is based on the face orientation instead of the whole body. The
face pose is determined using an algorithm by Zhu et al. [20]. The
result is shown in Figure 6.

2.4.2 Markov random field
Another example of group identification is given by the authors in [10].
They calibrate the camera by making pictures of people with known
orientation and position with respect to the first person. This informa-
tion is then used to make a formula to compute the 3D location of each
person from a 2D image. Some parameters are for example the height
of the head and the image coordinates. Moreover a first estimate of the
orientation is computed of each person. The orientation is assumed to
have a higher probability to be towards another person and also to have
a higher probability to be towards the same spot as the orientation of
another person. This information is all combined in a Markov random
field to determine the final orientations. The persons that are looking
at each other or to the same object are then said to be in a group.

2.4.3 Structured groups of people
Choi et al. in [8], propose a new approach to groups and interaction
classification. They introduce the concept of people forming struc-
tured groups while partaking in social interactions. Examples of these
groups can be a line of people in front of a shop, two persons sitting
on a bench or a group of people sitting side by side on multiple rows
like we would observe during a lecture. Their idea is to combine these
groups to identify the type of interaction taking place.

A line of people behind a group of two people, in which one is
paying, implies that people are shopping. Also a line of people sitting
side by side and one person in front, speaking, means that some kind
of lecture is taking place.

This technique is applied to picture of groups taken by an external
perspective and, therefore, is sensitive to the usual issues of obstruc-
tion, changes in perspective and many more.

2.5 Classification
Now that we know how to find and track persons and how to find po-
tential groups, we need a method to combine all the collected informa-
tion and give a final decision on whether a social interaction is present
in the data. Since the data consists of time series, a Recurrent Neural
Network is a natural choice. However, we have also find researchers
to use other types of classifiers. We first describe one method using
a Recurrent Neural Network, then we discuss another method using a
Support-Vector Machine.

2.5.1 Recurrent Neural Network
Aghaei et al. in [4] employ recurrent neural networks (RNN) to per-
form classification of the feature vectors extracted from photo frames.
Specifically, they used a Long Short Term Memory (LSTM) network
to take advantage of the temporal evolution of the scene. This is due
to the recurrent structure of the network where hidden units work as
memory cells and there are cycling connections within nodes. An
LSTM network was preferred since an RNN isn’t capable of learning
task with a substantial temporal gap between events due to the pres-
ence of only short term memory cells.
Being able to recognise and classify social interactions with time gaps
inside the sequences is not a trivial operation since the LSTM has to
learn to ”protect the memory cell contents from against even minor
internal state drift” [4]. Also, hidden units use the information stored
inside other memory cells to decide whether or not to access the infor-
mation stored inside them.
For performing the actual training of the network, they employed a
backpropagation function with a time element (BPTT) to extend the
series of derivatives calculated with the chain rule in the standard back-
propagation method.

2.5.2 Support-Vector Machine
Alletto et al. in [6] defined a new way to determine the relation
between two individuals that may be engaging in a social interac-
tion. They present the relation between two persons r and t as
φrt = (d,or,ot) where d is the distance between the individuals, or and
ot are, respectively, the rotation needed to look at the other person.

After having defined these correlations, they explore the idea of us-
ing a simple correlation clustering algorithm to perform the grouping.

SC@RUG 2020 proceedings

85

Fig. 7. This is an example of group formation by Alletto et al.[6]. One
group is shown in green and the group of the camera wearer (red dot)
is depicted by red.

They employ a correlation matrix W where Wrt > 0 if the two individ-
uals are engaging in a social interaction and Wrt < 0 if they are not.
To identify a social interacting group using this correlation matrix we
simply have to look for the subset of individuals y = r1,r2, ...,rn that
has the biggest sum of all related Wrir j where i 6= j.

To reduce the complexity of the problem however, they subse-
quently modified the representation of the data to be a structured graph
instead of a matrix. On top of this they employed a structural SVM to
learn the discriminant function that can match all the pairs (r,t) of in-
dividuals with the right group formation y. In this process, assigning
two non interacting individuals to a determined group, will increase
the error used for measuring. Due to the relevance that the error pos-
sesses, choosing the right loss function is critical.
The authors found the MITRE Score[17] as an appropriate scoring
measure since its application is, according to the authors, in many
ways similar to the classification of social interaction. An example
of the result of this procedure can be seen in figure 7. Here we can
easily observe how the faces of people partaking in different social
interaction are highlighted by different colors. The red circle at the
bottom represents the person wearing the camera.

3 DISCUSSION

Up to this point, we have presented methods for the detection of people
and the classification of groups using images. Most of them consid-
erably overlap and together they can be combined in a very powerful
framework. However, these methods have a computational load that
have to be taken into account. Another method we mentioned, the one
used by [4] with 2 frames per minute video, took that into account and
tried to recover the same information as in other experiments while
using less data. Now we will try to highlight how these methods may
interact among themselves to provide valuable information on streams
of images.

We have seen that the F-formation is widely used by a range of pa-
pers, to identify individuals partaking in the same social interactions.
It is an easy method to implement because the only needed variables
are the orientations and relative distances of the subjects. However, the
method is a simplification of a much more complex model. It is not
always correct to assume that people in F-formation are interacting.
An easy counterexample is people in a public transport context: they
will often face each other and stand close together, also inside the p-
space, even though they are not interacting. On the other hand, people
can also interact without showing a clear F-formation. For example
having a conversation while walking or sitting next to one another is
easily missed.

An addition to this model, that could keep it simple, may be to
consider the emotion of faces in the scene. Recognising people with
neutral emotions may really help to correctly classify people as not
interacting while being in the F-formation. An example of this method

by [1] is shown in Figure 3. However, this also adds another layer of
computation to the pipeline so it is not always employed.

To reinforce the F-Formation model, we could also add probabili-
ties extracted from a Markov random field constructed as described in
sub-section 2.4.2. With a Markov random field, it was also possible
to study groups from five to ten people and to gain some information
on the interaction. In fact it is possible to understand what kind of
interaction is going on by checking who and how often people speak.
This. however, would add another layer of complexity, if added on top
of the F-Formation, but it would help with false negatives such as peo-
ple far away from the group or cases where the o-space, and therefore
the p-space, is harder to define. An example could be a person that is
considered to be outside of the p-space and, therefore, out of the inter-
action. However, when we consider its gaze, we could discover that
he is looking in the same direction as the others, partaking in a type of
interaction.

Another attempt at classifying social interactions by looking at
groups of people was presented in sub-section 2.4.3. The approach
starts from the same premises of the other, such as face detection and
tracking, but goes on to something different. Their objective is to be
able to identify the type of social interaction happening by knowing
which kind of groups are partaking in it, as explained in the relative
sub-section. The idea behind this is that social interactions always
have recurrent structures. A lecture usually has rows of students sitting
while listening to a professor who is standing in from of them. While
this approach could offer simpler classification methods, it could re-
turn false results. The assumption that doesn’t have to be violated is
that determined social interactions either never change their structure
or that they have different ways they can be composed. This last part
also implies that a particular structures must uniquely identify a type
of social interaction.

In [6] the authors approach is to simplify the process of identifi-
cation and tracking as much as possible without loss of generality.
Before advancing to the clustering procedure assisted by structured
SVM, as previously discussed, they estimate the relative position of
individuals for each frame. Only two variables from the 3D scene are
used for the reconstruction of the model by assuming that faces are on
the same plane. This plane is divided into cells with which the depth
information of the subjects is estimated.

Another key point of the above mentioned paper is the employ-
ment of a novel head pose estimation procedure. To remove as much
noise as possible for obtaining more precise results, they perform var-
ious methods to achieve robustness against scale and lighting settings.
These include contrast normalization, background subtractions and re-
sizing.

Results for their methods are reported in Figure 8. As we can ob-
serve and as the authors report, some training scenarios perform better
than others. When the algorithm trains on the laboratory setting, it
achieves a good generalization by keeping a low standard deviation on
the error. However is also noticeable how the training on the coffee
settings and the party setting tend to push the model towards overfit-
ting.

The type of footage used in the previous example is high qual-
ity video. With high quality we mean a resolution which is usually
1920x1080 or 1280x720 with a 15 or 30 frame per seconds capturing
rate. The employment of this type of data resulted in an high stor-
age and computational complexity. In [1] the authors experimented
on the adoption of low frame rate video. Obtaining pictures every 30
seconds results in a drastic decrease of data. Their approach to cope
with less data is with the employment of an LSTM recurrent neural
network. As hidden units behave like memory cells, their algorithm
is able to remember the previous social interactions and identify when
such events start and finish. To also help improve the social interaction
recognition, the authors propose four available settings:

SID1: This utilize information on the distance of the individuals and
their head rotation.

SID2: This setting is built upon the previous one by adding also the
faces pitch and roll. This way we are estimating the complete

An overview of methods used for automatic detection of social interaction. . . – Alessandro Pianese and Tanja de Vries

86

Fig. 8. Results from training and testing the method described in [6] on the ECO-Group dataset.

head orientation and therefore achieving higher precision in so-
cial interaction detection.

SID3: This is also built upon the first setting but instead of adding
pitch and roll, an estimate of emotion is calculated by the facial
expression and used classification.

SID4: Here the authors combine all the information previously men-
tioned obtaining a more complex model as well as a more precise
one.

As one could expect the SID4 setting yielded the highest result for
both social interaction detection and classification. This showed how
less information can be captured and employed if we are willing to
accept a higher model complexity as a trade off.

4 CONCLUSION

As we have seen, scientific literature presents various approaches to
identifying and classifying social interactions. The common ground
they all share is comprised of the face detection and tracking tech-
niques employed. However, the differences between papers lies into
the implementation details. This is, for example, noticeable in the
techniques employed for classification. From clustering to Support-
Vector Machines and to LSTM Recurrent Neural Networks, they were
still able to obtain significantly good results.

The method that however impressed us the most is described in [4].
Here the footage available possesses only one frame for 30 seconds.
The model they proposed, however, is obviously more complex due to
estimating the complete head position and orientation of the subject.
However, the accuracy with which they can identify and classify social
interaction range from 85% to 95%, which is a remarkable result with
such few images.

As a future development it would be beneficial for the field to iden-
tify and recognise subtle body gestures as described in [9]. They are
often carried out unconsciously and could offer a greater insight into
social interactions.

ACKNOWLEDGEMENTS

The authors wish to thank Estefania Talavera Martinez and Alina
Matei for reviewing this paper.

REFERENCES

[1] M. Aghaei, M. Dimiccoli, C. C. Ferrer, and P. Radeva. Social
style characterization from egocentric photo-streams. arXiv preprint
arXiv:1709.05775, 2017.

[2] M. Aghaei, M. Dimiccoli, C. C. Ferrer, and P. Radeva. Towards social
pattern characterization in egocentric photo-streams. Computer Vision
and Image Understanding, 171:104–117, 2018.

[3] M. Aghaei, M. Dimiccoli, and P. Radeva. Multi-face tracking by extended
bag-of-tracklets in egocentric photo-streams. Computer Vision and Image
Understanding, 149:146–156, 2016.

[4] M. Aghaei, M. Dimiccoli, and P. Radeva. With whom do i interact?
detecting social interactions in egocentric photo-streams. In 2016 23rd
International Conference on Pattern Recognition (ICPR), pages 2959–
2964. IEEE, 2016.

[5] T. Albrecht, M. Lüthi, and T. Vetter. Deformable Models, pages 210–215.
Springer US, Boston, MA, 2009.

[6] S. Alletto, G. Serra, S. Calderara, F. Solera, and R. Cucchiara. From
ego to nos-vision: Detecting social relationships in first-person views.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 580–585, 2014.

[7] H. Buxton. Learning and understanding dynamic scene activity: a review.
Image and vision computing, 21(1):125–136, 2003.

[8] W. Choi, Y.-W. Chao, C. Pantofaru, and S. Savarese. Discovering groups
of people in images. In D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars,
editors, Computer Vision – ECCV 2014, pages 417–433, Cham, 2014.
Springer International Publishing.

[9] M. Cristani, R. Raghavendra, A. Del Bue, and V. Murino. Human behav-
ior analysis in video surveillance: A social signal processing perspective.
Neurocomputing, 100:86–97, 2013.

[10] A. Fathi, J. K. Hodgins, and J. M. Rehg. Social interactions: A first-
person perspective. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1226–1233. IEEE, 2012.

[11] D. Gatica-Perez. Automatic nonverbal analysis of social interaction in
small groups: A review. Image and vision computing, 27(12):1775–1787,
2009.

[12] E. Goffman et al. The presentation of self in everyday life. Har-
mondsworth London, 1978.

[13] A. Kendon. The f-formation system: The spatial organization of social
encounters. Man-Environment Systems, 6(01):1976, 1976.

[14] A. Kendon. Conducting interaction: Patterns of behavior in focused en-
counters, volume 7. CUP Archive, 1990.

[15] F. Setti, C. Russell, C. Bassetti, and M. Cristani. F-formation detection:
Individuating free-standing conversational groups in images. PloS one,
10(5):e0123783, 2015.

[16] D. Umberson and J. Karas Montez. Social relationships and health:
A flashpoint for health policy. Journal of health and social behavior,
51(1 suppl):S54–S66, 2010.

[17] M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and L. Hirschman. A
model-theoretic coreference scoring scheme. pages 45–52, 01 1995.

[18] C. Xu and J. L. Prince. Snakes, shapes, and gradient vector flow. IEEE
Transactions on image processing, 7(3):359–369, 1998.

[19] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm
computing surveys (CSUR), 38(4):13–es, 2006.

[20] X. Zhu and D. Ramanan. Face detection, pose estimation, and landmark
localization in the wild. In 2012 IEEE conference on computer vision and
pattern recognition, pages 2879–2886. IEEE, 2012.

SC@RUG 2020 proceedings

87

Comparison between the Dropout and DropConnect regularization
schemes

Ludger Visser, Ariadna Albors Zumel

Abstract— Deep learning neural networks are very powerful, but likely to overfit on a training dataset. In this paper, we look at two
state-of-the-art regularization methods for dealing with the overfitting problem of a deep neural network. First, we look at Dropout,
a technique where we drop units with all their connections from the network randomly by a chosen probability. This reduces the co-
adapting in units, which results in less overfitting. Second, we consider DropConnect a generalization of Dropout. In DropConnect, we
randomly drop only weights by a probability. We evaluate both regularization schemes on a range of datasets in shallow architectures.
Finally, we compare the accuracy performance of the two schemes on different datasets and conclude that Dropout performs slightly
better than DropConnect despite the latter being more stable through different rates.

Index Terms—Neural Networks, Deep Learning, Regularization, Dropout, DropConnect.

1 INTRODUCTION

Deep neural networks are popular machines because they can be
trained to learn complex relationships between input and output. In
order to be capable of this, neural networks have many parameters,
sometimes as many as millions. With that many parameters, deep
neural networks are known to try and interpret patterns in the noise
of its training data. To reduce the aforementioned overfitting, several
methods have been developed. This includes methods that stop
training as soon as the performance on a test set deteriorates. For
example by weight penalties, L1 and L2 regularization or weight
sharing [10]. Without early stopping the training, a popular alternative
method to prevent overfitting is by use of an ensemble of models.
With an ensemble of model, each model is trained on different data
and for testing one takes the average result of the models’ output
for data input. This works decently for small neural networks [16],
but it is not the perfect solution for all neural networks. Often
one neural network model requires already a long training time by
itself. Thus multiple models for an ensemble require more training
time than desired. Besides the long training time, there is also the
extra effort to maintain many different models needed for an ensemble.

Dropout [13] is a regularization method where during training
some units are dropped from the neural network. In each train-
ing iteration, different units are dropped to get a different neural
network at each training iteration. This prevents hidden units in
neural network layers from co-adapting too much, which would
result in overfitting. DropConnect [15] is another regularization
method. DropConnect drops weights of units during the training
phase while Dropout drops whole units with all their weights. Both
Dropout and DropConnect are similar to an ensemble having different
neural networks during the training phase, but not the additional in-
convenience and computational effort of maintaining different models.

Both Dropout and DropConnect have shown successful results[6] with
an Extreme learning machine, which is a neural network consisting
of a single hidden layer where the input-to-hidden weights are
randomly initialized and only the output weights are determined by
backpropagation. DropConnect has also shown promising results with
a learning vector quantization algorithm implementation [11]. Both
papers [6, 11] show promising results with an increasing classification
performance compared to using neither generalization scheme.

• Ludger Visser is an MSc Computing Science student of the University of
Groningen, E-mail: l.e.f.visser@student.rug.nl.

• Ariadna Albors Zumel is an MSc Computing Science student of the
University of Groningen, E-mail: a.albors.zumel@student.rug.nl.

In this paper, we perform four experiments with Dropout and
DropConnect to further investigate their performance on classification
tasks using neural networks. We used different drop rates and different
datasets. In our experiments, we found that it is not necessarily always
beneficial to use Dropout or DropConnect on a neural network since
only a few specific rates improve its performance. We also observed
that DropConnect is more stable than Dropout, although Dropout
usually achieves higher accuracies.

The following part of the paper is organized as follows: in Sec-
tion 2 we give more background information about how Dropout and
DropConnect work. In Section 3 we explain our experiment setups in
detail, including a description of the datasets used. In Section 4 we
show the results of the experiments performed on each dataset. Lastly,
in Sections 5 and 6 we discuss and draw conclusions from our results.

2 BACKGROUND

In the following subsections we introduce both Dropout and Dropcon-
nect separately. We look at how they are applied to a neural network
schematically and the mathematical background of both methods.

2.1 Dropout

In Dropout, we drop some units in the neural network with all their
output weights [13]. This can be seen in Figure 1. The choice of which
units to drop is random and each unit is retained by a probability p and
dropped by probability 1− p. Dropout can be described in mathemat-
ical terms. For a single hidden unit with input vector v = [x1,x2, ...,xn]
the output of the unit can be described as,

H = f (∑
i

Wixi) (1)

In Eq. (1), the unit’s local threshold is left out for simplicity. Here f
is the activation function and W is the weight vector [w1,w2, ...,wn].
Applying Dropout to this single hidden unit, would result in:

H = p · f (Wx) (2)

m is a Bernoulli variable with probability p to be 1 and 1− p to be
0. For m = 1, we retain the unit and Eq. (2) is the same as Eq. (1).
For m = 0, the output is 0 and we drop the unit. Now instead of a
single hidden unit, we have a layer consisting of d hidden units, where
d ∈N. In this case, the weights W then become a matrix of size n×d.
Without implementing Dropout, the output vector of the units can be
described by r with:

r = f (Wx) (3)

88

with which Dropout becomes:

r = M ? f (Wx) (4)

where ? is the element-wise product. M is a vector of d independent
Bernoulli random variables each of which has a probability p of being
value 1 and otherwise 0. M is called the mask and it determines which
units are dropped. A new mask is drawn for every example during
training.

The Dropout probability is a hyperparameter and should be a
value between 0 and 1. A value of 0.5 seems close to the optimal
for a wide range of tasks and networks [13]. Before every training
iteration, we randomly drop units starting from the full original neural
network again. Following this approach, there is very little chance
to have exactly the same network of active units in different training
iterations. This prevents the units from co-adapting too much whereby
the neural network tries to read patterns in the noise of the training
data.

During testing, we do not actually drop units. If a unit is re-
tained with probability p during training, the outgoing weights of that
unit are multiplied by p at test time as shown in Figure 2. This ensures
that for any hidden unit the expected output (under the distribution
used to drop units at training time) is the same as the actual output at
test time [13]. The intuitive idea behind Dropout is that it takes the
averages of different models by dropping units randomly. The same
way an ensemble uses multiple different models, but without having
to train all the models separately. By dropping units we thin the
neural network, therefor it makes sense to start with a bigger network
than one would without Dropout. To do so we divide the size of the
network without Dropout by the retain probability of the hidden units.
That should be the size of our neural network where we will apply
Dropout. Following this approach, the expected network size after
dropping units will be the same as the other neural network without
applying Dropout.

Fig. 1. Dropout Neural Net Model. Left: A standard neural network with
2 hidden layers. Right: An example of a thinned network produced by
applying Dropout to the network on the left. Crossed units have been
dropped. Figure taken from [13].

Fig. 2. Neural network hidden unit Left: At train time a unit is dropped
with a probability 1− p. Right: At test time all output weights of a unit
are multiplied by probability p. Figure taken from [13].

2.2 DropConnect
The second method we will discuss is DropConnect[15]. Just as in
Dropout, DropConnect has a different model for each training iter-
ation. The difference is that in Dropout we randomly drop all the
weights of some units, whereas in DropConnect we randomly drop
single weights. In a neural network, there are always more weights
than hidden units, so there are more ways to thin the model with Drop-
Connect. DropConnect can also be described in mathematical terms.
From Eq. (3), where we described a layer without Dropout or Drop-
Connect, the equation of a layer with DropConnect follows as:

r = f ((M ?W)x) (5)

where DropConnect mask M is a matrix of r × d independent
Bernoulli random variables, each of which has a probability p of
being value 1 and otherwise 0. The mask M is also drawn again for
every example during training.

In Figure 4 Dropout is applied to the neural network with 1
hidden layer from Figure 3. In Figure 5 DropConnect is applied to the
same neural network for comparison. DropConnect is a generalization
of Dropout because with DropConnect one can drop all the weights
from a hidden unit as is the case with Dropout. This can be seen in
Figure 5 on the right, as the second hidden unit is effectively dropped.
As with Dropout, DropConnect prevents the units from adapting too
much and read patterns in the noise of the training data. Figure 6
shows another perspective of Dropconnect in a neural network.

Fig. 3. A neural network with 1 hidden layer. Green circles are the input
and output units and yellow circles are the hidden units. No Dropout or
DropConnect applied. Figure taken from [1].

Fig. 4. A neural network with 1 hidden layer. Green circles are the input
and output units, yellow circles are the hidden units and grey circles are
dropped units. Left and right are two different iterations of training, both
after applying Dropout. Figure taken from [1].

3 EXPERIMENTS

In order to compare the performance of Dropout to DropConnect,
we built four neural networks to perform classification tasks on two
different datasets. The neural networks were built using a high-level
neural network API for Python called Keras [7, 8].

SC@RUG 2020 proceedings

89

Fig. 5. A neural network with 1 hidden layer. Green circles are the input
and output units. The grey faded edges are dropped weights and the
clear grey edges are retained weights. Left and right are two different
iterations of training after applying DropConnect. Figure taken from [1].

This section is divided into two parts. Firstly, we introduce the
two datasets used. Afterwards, we describe the neural network
architectures used for each of the four experiments.

3.1 Datasets
3.1.1 CIFAR-10 dataset
The dataset CIFAR-10 [4] is a balanced dataset, which consists
of 60,000 color images of 32x32 pixels of 10 classes (airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck). From these
images, 50,000 were training images and the 10,000 remaining were
testing images. In order to make this classification task differ more
from our second experiment, we choose only two classes (horse, dog),
resulting in a binary classification task. Therefore, we used a total of
10,000 images for training and 2000 for testing.

Before using this dataset, we preprocessed the data by normal-
izing the pixel values to the [0,1] range and also performed
one-hot-encoding. One-hot-encoding transforms the training labels
into binary n-dimensional vectors (where n is the number of classes)
with zeros everywhere except at the position of the corresponding
class, which has a one [2]. It is the most common target encoding
strategy [12].

We performed two experiments with this dataset; one with only
dense layers and another with also convolutional layers. The archi-
tectures of the corresponding neural networks are explained in the
subsections 3.2.1 and 3.2.2 respectively.

For both experiments, we trained and evaluated the performance
of our neural network on ten different Dropout/DropConnect rates
ranging from 0 to 0.9 with steps of 0.1. The evaluation for each
rate was repeated five times in order to take into consideration the
randomness in the Dropout/DropConnect schemes as well as in the
optimizers.

3.1.2 MNIST
The second dataset used was the MNIST Database of Handwritten
Digits. It contains a total of 60,000 training and 10,000 testing grey-
scale images of 28x28 pixels [3]. The images consist of handwritten
digits with values between 0 and 9. Again, before training the neural
network, we applied the same preprocessing as for the CIFAR-10
dataset.

Similarly, as with the CIFAR-10 dataset, we performed two ex-
periments; one with convolutional layers and one with only dense
layers (an explanation of the neural network architectures can be
found in the subsections 3.2.3 and 3.2.4).

Once more, we trained and then tested the performance of the neural
network of both experiments on ten different Dropout/DropConnect
rates ranging from 0 to 0.9 with steps of 0.1 and the evaluations were
performed five times for each rate.

3.2 Network architectures

3.2.1 CIFAR-10 with dense layers

The first experiment with this dataset contained four dense layers and
a Dropout/DropConnect layer between the first and the second dense
layers. The model was then compiled using the Stochastic gradient de-
scent (SGD) optimizer [14] and Categorical Cross-Entropy loss (also
known as Softmax loss) [5].

3.2.2 CIFAR-10 with CNN layers

The neural network used on the second experiment with this dataset
consisted of two convolutional layers and one dense (fully-connected)
layer as the output layer. Between them, we also applied a layer of
batch normalization, which normalizes the activation of the previous
layer [7], and a layer of max pooling, which is the most common type
of pooling layer and is used to reduce overfitting through spacial re-
duction. Then we had the Dropout/DropConnect layer, depending on
the experiment, situated after the first max pooling layer. The compi-
lation was done using the same loss function and optimizer as in the
previous experiment.

3.2.3 MNIST with dense layers

The neural network for the first experiment with this dataset was com-
posed of three dense layers and a Dropout/DropConnect layer between
the second and the third aforementioned dense layers. The compilation
of the model was done using the Adam optimizer [9] and Categorical
Cross-Entropy, as mentioned earlier, for the loss function.

3.2.4 MNIST with CNN layers

We performed a second experiment, where we slightly modified the
architecture of the neural network used in the previous experiment and
added a convolutional layer as the first hidden layer. In order to make
the experiments more comparable, we also kept the same optimizer
and loss function.

4 RESULTS

The results from the first experiment can be found in Figure 7, where
we show the average accuracy (for both the training and the testing
data) over the five measurements for each rate. Firstly, we can observe
that there is indeed overfitting since the training accuracies are higher
than the testing accuracies (the testing accuracies will be referred to
as “accuracies” in the remaining of the paper).

It can also be observed that in this experiment, DropConnect
outperforms Dropout (we always discuss the performance with re-
spect to the testing data). In addition to Dropout drastically decreasing
on accuracy for high rates, it also does not achieve a significant im-
provement on accuracy compared to the base accuracy (the accuracy
at rate 0, which does not use any regularization schema). Contrarily,
DropConnect shows stable results (despite having a slightly higher
standard deviation) and achieves maximum performance at the rate of
0.8, which meant an almost 0.02 increase in performance compared
to the base accuracy.

Comparison between the Dropout and DropConnect regularization . . . – Ludger Visser and Ariadna Albors Zumel

90

Fig. 6. as Li Wan et al. writes in [15] ”The masked weights are multiplied with this feature vector to produce u which is the input to an activation
function a and a softmax layer s. For comparison, (c) shows an effective weight mask for elements that Dropout uses when applied to the previous
layer’s output (red columns) and this layer’s output (green rows). Note the lack of structure in (b) compared to (c).” This is a neural network structure
with DropConnect implemented. Figure taken from [15]

Fig. 7. Accuracies for a binary classifier using data from the CIFAR-10
dataset. The solid lines are testing accuracies and the dashed lines are
training accuracies. The standard deviation for the training data are of
the order of 0.001 for both regularization schemes.

In Figure 8, there are the results obtained from the experiment per-
formed on the same dataset, the CIFAR-10 dataset, but this time using
a convolutional neural network.

Fig. 8. Accuracies for a binary classifier using data from the CIFAR-10
dataset on a CNN. The solid lines are testing accuracies and the dashed
lines are training accuracies. The standard deviation for the training data
are of the order of 0.001 for both regularization schemes.

Again, we can see that that the neural network is overfitting, meaning
that using a regularization schema is needed. It is also observable

that most measurements of the accuracies using DropConnect have
a small standard deviation, meaning that this schema is quite stable.
It also showed an increase in performance for most regularization
rates, although the improvement in accuracy was only of 0.01 at
the maximum point. On the other hand, the results obtained using
Dropout show more significant standard deviations, indicating that
this regularization schema is less stable than DropConnect.

We can also see that the rates of 0.1 and 0.3 slightly improved
the performance of the neural network, while the other rates decreased
its performance. The results also show that Dropout is more affected
by significant rates compared to DropConnect, which has improved
performance for rates as high as 0.7.

The results obtained from the MNIST dataset, without convolu-
tional layers, can be found in Figure 9. Despite the small difference
between training and testing accuracies, it can still be observed that
the neural network is overfitting. Moreover, unlike in the previous
experiment, Dropout was the regularization schema that performed
better in this case, with a maximum increase of performance achieved
at a rate of 0.4. On the other hand, DropConnect shows a slightly
higher standard deviation than Dropout, although the latest has more
difference between the performance for each rate. Again, it can also
be observed that Dropout performs worse than DropConnect for
higher rates.

It should also be noted that for the MNIST dataset, the in-
creased accuracy achieved with either regularization scheme was
small, with a maximal increase in accuracy of 0.001 achieved with
the aforementioned 0.4 rate on Dropout. This was probably due
to the neural network not overfitting much, which meant that the
regularization schemes could not have a significant contribution to
improving the performance of the neural network.

Lastly, from the results obtained for the experiment on the MNIST
dataset using a convolutional neural network (see Figure 10), it can
be observed that DropConnect, despite showing a slightly higher
standard deviation than Dropout, gives more stable results and shows
better performance for high rates. On the other hand, Dropout is the
regularization schema that achieves the most significant improvement
in accuracy at the rate of 0.3, which is close to the optimal rate for
Dropout obtained on the previous experiment (MNIST dataset without
convolutional layers on the neural network). Again, we observed the
neural network was overfitting, which made the use of a regularization
schema relevant.

SC@RUG 2020 proceedings

91

Fig. 9. Accuracies for a multi-class classifier using data from the MNIST
dataset. The solid lines are testing accuracies and the dashed lines are
training accuracies. The standard deviation for the training data are of
the order of 0.0001 for both regularization schemes.

Another notable result was the drastic decrease in accuracy present in
the experiment with Dropout at a rate of 0.9. This behavior was also
observed in our first and third experiments.

Fig. 10. Testing accuracies for a multi-class classifier using data from
the MNIST dataset on a CNN. The solid lines are testing accuracies
and the dashed lines are training accuracies. The y-axis was chopped
in order to see the difference between the testing accuracies of the two
schemes better. The standard deviation for the training data are of the
order of 0.0001 for Dropout and 0.001 for DropConnect.

The results for all four experiments are summarized in Tables 1 and
2. The former contains the results for all the Dropout experiments
while the latter contains the same information but for the DropConnect
experiments.

Experiment base acc. max. acc. avg. acc. avg. std
CIFAR-10 0.802 0.809 0.784 0.009

CIFAR-10 w. CNN 0.851 0.865 0.838 0.023
MNIST 0.979 0.981 0.979 0.001

MNIST w. CNN 0.985 0.986 0.984 0.0009

Table 1. Summary of accuracies and standard deviations obtained for
each experiment using Dropout as regularization schema.

Experiment base acc. max. acc. avg. acc. avg. std
CIFAR-10 0.802 0.814 0.805 0.010

CIFAR-10 w. CNN 0.851 0.861 0.852 0.016
MNIST 0.979 0.979 0.979 0.002

MNIST w. CNN 0.984 0.985 0.985 0.0012

Table 2. Summary of accuracies and standard deviations obtained for
each experiment using DropConnect as regularization schema.

5 DISCUSSION

The paper aimed to compare two regularization schemes, Dropout
and DropConnect, which are used in order to deal with overfitting
in neural networks. To perform such a comparison, we conducted
four experiments, which we showed that were overfitting since the
training accuracies were higher than the testing accuracies. From
the results obtained (see Tables 1 and 2), it can be concluded that
DropConnect is a more stable regularization schema since it showed
more consistent results over the different rates (despite having a
higher standard deviation in three out of the four experiments) and
performed well also on higher rates. On the other hand, unlike in [15],
the maximum improvement in accuracy was achieved using Dropout
as regularization schema in all experiments except the first one, which
was unexpected. This implies that if the optimal rate for Dropout
is known, this should be the regularization method used in order to
achieve the most favorable results. Despite this, we also observed that
the minimum accuracies were also obtained using Dropout with a rate
of 0.9 in all the experiments performed.

Our experiments did not show any clear preference between
Dropout or DropConnect, depending on whether the neural network
had convolutional layers or not. Still, this does not discard a possible
correlation between the neural network architecture and the optimal
regularization schema to be used.

It should be noted that the number of experiments performed
was limited, which means that our results and corresponding conclu-
sions should only be taken as starting points for future research, in
particular with respect to the standard deviations. Still, it provided
us with a first intuition on the core differences between Dropout
and DropConnect and indicated that further research should be done
to investigate the idea that DropConnect might be a more stable
regularization schema than Dropout.

Therefore, to achieve a deeper understanding of the advantages
of using either Dropout or DropConnect as regularization schemes,
more experiments should be performed. These experiments should
explore new datasets as well as variations of the presented neural
network architectures for CIFAR-10 and MNIST, such as using
different optimizers, activation functions, amount of layers or amount
of neurons per layer.

6 CONCLUSION

To summarize, in this paper we have performed four experiments on
two different datasets in order to compare the Dropout and DropCon-
nect regularization schemes. From our results, we conclude that Drop-
Connect is more stable than Dropout, although Dropout usually per-
forms better for specific rates. These results provide a starting point
for future research, where more experiments should be performed to
get a deeper understanding of the advantages of each regularization
schema.

ACKNOWLEDGEMENTS

The authors wish to thank Michael Biehl for his availability and guid-
ance.

REFERENCES

[1] Machine learning questions: How to prevent overfitting. Retrieved
from https://ztlevi.github.io/Gitbook_Machine_

Comparison between the Dropout and DropConnect regularization . . . – Ludger Visser and Ariadna Albors Zumel

92

Learning_Questions/docs/General/How_to_prevent_
overfitting.html, last accessed on 27/02/2020.

[2] H. Jaeger. Machine Learning. Lecture Notes, 2020. Master Program in
Artificial Intelligence Rijksuniversiteit Groningen, Bernoulli Institute.

[3] Y. LeCun, C. Cortes, and C. Burges. The mnist database of handwritten
digits. Retrieved from http://yann.lecun.com/exdb/mnist/,
last accessed on 23/02/2020.

[4] CIFAR-10. The cifar-10 dataset. Retrieved from https://www.cs.
toronto.edu/˜kriz/cifar.html, last accessed on 23/02/2020.

[5] I. Goodfellow et al. Deep Learning. MIT Press. Retrieved from http:
//www.deeplearningbook.org, last accessed on 11/03/2020.

[6] A. Iosifidis, A. Tefas, and I. Pitas. Dropelm: Fast neural network reg-
ularization with dropout and dropconnect. Neurocomputing, 162:57–66,
2015.

[7] Keras Documentation. Keras: The python deep learning library. Re-
trieved from https://keras.io/, last accessed on 23/02/2020.

[8] Keras Team. Keras. Retrieved from https://github.com/
keras-team/keras, last accessed 22/02/2020.

[9] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
arXiv e-prints, page arXiv:1412.6980, Dec. 2014.

[10] S. J. Nowlan and G. E. Hinton. Simplifying neural networks by soft
weight-sharing. Neural Computation, 4(4):473–493, 1992.

[11] J. Ravichandran, S. Saralajew, and T. Villmann. Dropconnect for eval-
uation of classification stability in learning vector quantization. ESANN
2019 proceedings, European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning., 2019.

[12] P. Rodrı́guez, M. A. Bautista, J. Gonzàlez, and S. Escalera. Beyond One-
hot Encoding: lower dimensional target embedding. arXiv e-prints, page
arXiv:1806.10805, June 2018.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[14] T. Hastie et al. The elements of statistical learning: Data mining, infer-
ence, and prediction. Springer, 2001.

[15] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regularization of
neural networks using dropconnect. In S. Dasgupta and D. McAllester,
editors, Proceedings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learning Research,
pages 1058–1066, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[16] H. Y. Xiong, Y. Barash, and B. J. Frey. Bayesian prediction of tissue-
regulated splicing using rna sequence and cellular context. Bioinformat-
ics, 27(18):2554–2562, 2011.

SC@RUG 2020 proceedings

93

An Analysis of Neural Network Pruning in Relation to the Lottery
Ticket Hypothesis

M.J. Havinga R.S. Sawhney

Abstract—In this paper, we analyze the novel “lottery ticket” approach for pruning neural networks and compare it to traditional
techniques on dense feed-forward neural networks by the means of identifying “winning tickets”. We explore the precise conditions
required to identify and make use of these winning tickets and explore perspectives on the hypothesis from other work. We conclude
that there is demonstrable evidence in support of the hypothesis, but revealing winning tickets in any neural network remains a hard
task. We then discuss the continued research in this topic and suggest some research directions of our own.

Index Terms—neural networks, lottery ticket hypothesis, network pruning, network compression, architecture search

1 INTRODUCTION

Neural network pruning refers to the process of removing weights
from (dense) neural networks with the goal of improving efficiency
in terms of energy and memory consumption, as well as to simplify
the model [5, 21]. An early example of neural network pruning is
named Optimal Brain Damage and was proposed in 1990 by LeCun et
al. [14]. This method takes a reasonably sized network and selectively
deletes half of the weights based on a special metric, saliency, in order
to come up with a sub-network which could perform just as well if not
better than the main network. Many more methods for pruning have
since been proposed as illustrated in Sec. 2.1. The common goal of
these methods is the reduction of the number of weights in the model,
while sustaining an approximately equal model accuracy. As we will
see later, pruning can also improve the accuracy. Figure 1 shows an
illustration of pruning in general.

pruning
neurons

pruning
synapses

after pruningbefore pruning

Fig. 1: Illustration of unstructured pruning. Weights are removed by
the pruning algorithm based on some metric resulting in a sparser net-
work. Taken from [5], page 3.

In general, pruning is performed while training the network. The
resulting model is already trained at that point and reduced in the
number of parameters. An open question remains whether it is
possible to train a network from scratch, once it has already been
pruned to a sparse architecture [15, 5]. So far, It has been shown
that training a pruned neural network again from a new random
initialization is a hard task. When re-initializing such a sparse
network with random weights it generally achieves a lower accuracy
than the original trained network. For example, Li et al. noticed this
in [15] and claimed a “difficulty of training a network with a small
capacity”. As can be seen in Table 1 in [15], pruned models that have
been retrained from scratch perform systematically worse than their
pruned and unpruned original model.

M.J. Havinga and R.S. Sawhney are students at the University of
Groningen, Computing Science, Master programme.

If such a sparse network is hard to train, why has it proven successful
to train an over-parameterized network and prune it until a sparse
network remains? Han et al. explain this in [5] through the existence
of “fragile co-adapted features” in the network as described in [24].
Essentially, it is implied that the configurations of the weights co-
depend and can not be trivially re-initialized and retrained. Following
up on these findings, Frankle and Carbin proposed the lottery ticket
hypothesis and an accompanied conjecture, stated as follows.

Hypothesis. A randomly-initialized, dense neural network contains a
subnetwork that is initialized such that–when trained in isolation–it
can match the test accuracy of the original network after training for
at most the same number of iterations.
Conjecture. Stochastic gradient descent seeks out and trains a subset
of well-initialized weights. Dense, randomly-initialized networks are
easier to train than the sparse networks that result from pruning
because there are more possible subnetworks from which training
might recover a winning ticket.

Frankle and Carbin (2019) in [3]

From this point forward, we will refer to both the hypothesis and the
accompanied conjecture as “the lottery ticket hypothesis”. In this pa-
per, we explore this hypothesis. We task ourselves with investigating
the following questions.

1. What is the precise meaning and implication of the lottery ticket
hypothesis?

2. Can we find experimental evidence of the lottery ticket hypothe-
sis and if so under which conditions?

3. How can we explain the evidence supporting the lottery ticket
hypothesis and with which mechanisms?

To be able to adequately answer these questions, we will provide some
background information in Sec. 2. After this, we will discuss the meth-
ods and experimental results found by Frankle and Carbin [3], Liu et
al. [16] and ourselves in Sec. 3 and 4. In our discussion in Sec. 5, we
implicitly answer our research questions. Finally in Sec. 6, we suggest
some directions for future research in this topic.

2 BACKGROUND

As briefly explained previously, pruning refers to process of removing
weights from a (dense) neural network. Christopher Bishop [2] de-
scribes pruning as a method for finding optimal network architectures,
as a counterpart to network growing which adds weights rather than
remove them. On the other hand, Simon Haykin [6] describes prun-
ing as a regularization method for neural networks, i.e. to improve
the model’s generalization abilities. Sec. 2.2 further analyzes prun-
ing in this context. We will see that it is reasonable to regard pruning

94

as both a method of architecture search and regularization. There are
many different pruning methods using several completely different ap-
proaches. This large and diverse family of methods is illustrated in the
next section.

2.1 Pruning methods
Pruning methods can be classified as either pre-defined by the user or
automatically derived by the network. Another division of methods
can be made based on whether the pruning algorithm takes the net-
work architecture into account. Methods that do this are called struc-
tured methods, while methods that only consider individual weights
are called unstructured methods.

Unstructured pruning
Unstructured pruning methods find individual weights that are least
relevant and can be pruned. This method was used by Frankle and
Carbin to perform their experiments for the lottery ticket hypothesis
[3]. There is an important distinction between one-shot pruning and
iterative pruning.

One-shot pruning. This is the basic type of unstructured pruning
method which prunes the network as as function of the percentage
of the weights [3]. It involves the following steps.

1. Randomly initialize a neural network.

2. Train the network.

3. Set p% of weights from each layer (based on some metric) to 0.

Iterative Pruning. This is similar to the one-shot pruning method.
The major difference is that the weights are trained and pruned over n
rounds. In each round, p

1
n % of the weights are removed. This is the

main method used in [3].

To find winning tickets, Frankle and Carbin propose to reset the
weights of the pruned network to their original random initialization
[3]. If the found model is indeed a winning thicket, it can then be
retrained to gain an equivalent accuracy as the unpruned model.

Pre-defined structured pruning
The methods which employ structured pruning involve removing
the weights in the channels while keeping the target architecture in
mind before performing the pruning. The way in which pruning is
performed is set by the user and the manner is dictated by the pruning
algorithm itself. These methods were employed by Liu et al. to
counter the unstructured pruning methods performed by Frankle and
Carbin [16]. This technique of pruning is briefly explained in Figure
2. The different pre-defined structured pruning methods as used in
Liu et al.’s work are given below.

L1-norm based Filter Pruning. One of the earliest pruning methods
on channel pruning for convolutional neural networks. In this method,
the L1-norm for the filters is considered in each layer. A pre-defined
percentage of filters with smaller L1-norm is eliminated. [15]

ThiNet. This method is greedy as compared to the L1-norm. It prunes
the channel that has the least effect on next layer’s activation values
[17].

Regression Based Feature Reconstruction. The pruning is per-
formed by reducing the error during reconstruction of feature map of
the next layer. The optimization problem in this method is solved with
the help of LASSO Regression. [8]

Automatic Structured Pruning
Unlike the pre-defined structured pruning methods, here the target
architectures for the sub-network are derived automatically. Liu et. al.
argue that training these models from scratch can lead to comparable

Predefined: prune
x% channels in
each layer

Automatic: prune a%,
b%, c%, d% channels
in each layer

A 4-layer model

Fig. 2: A visualization for the pre-defined and automatic structured
pruning method. Figure 2 taken from [16].

or even better performance, concluding that the architecture derived in
these methods is much more important than the weights themselves.
The different automatic pruning methods are given below.A brief
methodology for this technique of pruning is explained in Figure 2.

Network Slimming. As described in [16], “imposes L1-sparsity on
channel-wise scaling factors from Batch Normalization layers during
training, and prunes channels with lower scaling factors afterward.”

Sparse Structure Selection. This method is a generalization of the
network slimming method as it also makes use of the sparsified scaling
factors to be used for pruning. It has been shown to be applicable on
the residual blocks in ResNet if required. [10]

4 8 16 32 64 128 256 512 1K 2K 4K
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

H

E
rr

o
r

Training
Test (at convergence)
Test (early stopping)

MNIST

Fig. 3: Relationship between the training/test error and the size of a
2-layer neural network trained by momentum stochastic gradient de-
scent. Here, H represents the network size in terms of the number of
hidden units. Figure 1 taken from [20].

2.2 Pruning in relation to the generalization error
Neural network pruning has been observed to improve the generaliza-
tion capabilities of the model. However, it is still debated how pruning
achieves this [1]. Historically, the network’s size in terms of the num-
ber of free parameters has been used as a metric of the complexity of
a network [14]. Since increased complexity implies an increased risk
of overfitting, it has been conjectured that the shrinking of a neural
network reduces this risk and improves the generalization capabilities
of the network. This theory however, has not been generally proven.
In fact, contradictory evidence has been found for specific network
architectures which implies that larger networks can generalize better
than smaller networks [20]. As can be seen in Figure 3, a larger net-
work always improves both the training and test error for this specific
experiment. It has been suggested that it is the pruning method itself

SC@RUG 2020 proceedings

95

from which the improved generalization arises. This theory, as postu-
lated by Bartoldson et al. [1], states that the “destabilizing effects” of
the pruning method allow the learning algorithm to leave potentially
sub-optimal local minima.

3 METHODS

To answer our research questions, we have evaluated the results found
by Frankle and Carbin in support of their hypothesis. We also analyzed
evidence found by others in relation to the hypothesis, specifically by
Liu et al. [16]. In their work, Liu et al. make certain arguments against
the findings of Frankle and Carbin. As we will see, the results of the
experiments depend strongly on the precise conditions of the experi-
ment. To help clarify this, we add results from our own experiments
as extra evidence.
In most of the experiments, four neural network models can be distin-
guished.

1. The original network with dense fully connected layers.

2. The network after training and pruning down to a p% density.
This is where classical pruning ends.

3. The pruned sparse network, re-initialized with new random
weights and trained again.

4. The pruned sparse network, re-initialized with its original
weights and trained again. This is the method proposed by Fran-
kle and Carbin to reveal winning “lottery tickets”.

In many of the experiments by Frankle and Carbin, Liu et al. and our-
selves, the MNIST [13] and CIFAR10 [12] data sets are used. MNIST
is a data set consisting of 60,000 training images (grayscale of hand-
written digits of 28x28 resolutions. CIFAR10 consists of the same
number of images, but of a slightly higher resolution (32x32), in color,
and of 10 different real-life object classes such as cats and airplanes.
CIFAR10 is arguably a larger and more complex data set than MNIST,
which is important to take into account in these experiments.
To find winning tickets, Frankle and Carbin make use of convolutional
neural network models with fully connected layers. They use opti-
mization strategies such as stochastic gradient descent (SGD), mo-
mentum SGD and Adam [11] also making use of dropout [23, 9] and
weight decay. The used pruning technique is mainly iterative unstruc-
tured pruning such that the winning tickets are sparse.
In [16], Liu et al. compare the performance of the pruned and the non-
pruned network with the help of different methods of pruning as dis-
cussed in Sec. 2.1. They employ different techniques such as Scratch-
B and Scratch-E which involve training the small pruned models for
the same number of epochs (Scratch -E) or training over the same
amount of computation budget (Scratch-B). If pruning the model de-
creases the number of FLOPs1 by at least a factor of 2, the number of
epochs is doubled. Note that since Liu et al. use automatic structured
pruning methods, their approach differs fundamentally from Frankle
and Carbin’s approach.
In our own experiments, we use a small convolutional neural network
applied to the MNIST data set. Our network is based on LeNet [13]
and most notably contains three fully connected layers, two of which
together make for nearly 95% of the network’s parameters2. The
model is trained using Adam [11]. With this, we recreate and train the
four network models as mentioned before for different pruning factors
p. We use iterative magnitude-based weight pruning to find our sparse
networks. This simple method, contributed by Zhu and Gupta [26],
prunes the weights of the lowest magnitudes until a desired sparsity
is reached. All our experiments are implemented with the use of the
Python programming language3 using the libraries TensorFlow4 and
Keras5 for implementing our neural networks.

1Floating point operations, a measure of computational load.
2These fully connected layers consist of 48,120 and 10,164 weights respec-

tively. The full network consists of 61,706 weights.
3https://www.python.org/
4https://www.tensorflow.org/
5https://keras.io/

rate 0.1 rand reinit
rate 0.01 rand reinit

rate 0.1, warmup 10K rand reinit

100 41.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Percent of Weights Remaining

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Te
st A

ccu
rac

y (
30

K)

100 41.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Percent of Weights Remaining

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Te
st A

ccu
rac

y (
60

K)

100 41.0 16.8 6.9 2.8 1.2 0.5 0.2 0.1
Percent of Weights Remaining

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Te
st A

ccu
rac

y (
11

2K
)

Fig. 4: Adapted from [3], page 7, Figure 7: “Test accuracy (at 30K,
60K, and 112K iterations) of VGG-19 when iteratively pruned.”

4 RESULTS

In this section, we give an overview of some of the results from dif-
ferent sources, as described in Sec. 3. We highlight only some results
which we think are important, relevant or exemplary. Equipped with
this knowledge, we will discuss our research questions in Sec. 5.

4.1 Experiments by Frankle and Carbin
The pruning technique performed on LeNet [13] is a simple layer-
wise pruning heuristic. A certain percentage of weights with the low-
est magnitudes in each layer is removed. Connections to output are
pruned at half the rate compared to the rest of the network. Here,
the MNIST data set is used for training on a LeNet 300-100 architec-
ture. From these experiments, it is concluded that in the case of a fully
connected network such as LeNet for a relatively small data set (such
as MNIST), the initialization is significant for the performance of the
winning ticket.

An Analysis of Neural Network Pruning in Relation to the Lottery Ticket . . . – M.J. Havinga and R.S. Sawhney

96

Using iterative pruning, the winning tickets are found to learn faster
than the original network. The winning tickets are pruned iteratively
to various extents. It is observed that a “winning ticket” with 51.3%
of the weights remaining gives a higher test accuracy than the origi-
nal network. When the density goes down to 21.1% it achieves this
higher test accuracy faster, in other words the training early-stops ear-
lier. At the point where the density becomes 3.6%, the winning ticket
performs on par again with the original network.
It is to be noted that winning tickets optimize more effectively but do
not generalize better in the case of an early stopping criterion. How-
ever at 50,000 iterations, the test accuracy still seems to improve, while
the training error is already down to 0. This implies that winning tick-
ets do generalize better.
When the model is randomly re-initialized, it is observed that for a
pruning density between 51.3% and 21% the winning tickets learn at
a slower rate in the case of random re-initialization and lose test accu-
racy after a little pruning, which supports the lottery ticket hypothesis.
One-shot pruning helps to identify the winning tickets without re-
peated training. It is observed from the experiments that the iteratively
pruned tickets learn faster and reach higher test accuracy at smaller
network sizes. Frankle and Carbin emphasize the need for iterative
pruning for their experiments on fully connected networks.
Moving on to slightly larger convolutional neural networks, Frankle
and Carbin use scaled down VGG and VGG-19 networks [22] as well
as ResNet [7] for experiments on the CIFAR10 data set [12]. The ba-
sic experiment is the same as in the case of LeNet. As the network is
pruned, it tends to learn faster and the test accuracy is improved. It-
erative pruning and random re-initialization for different layers of the
ConvNet was performed. The results can be found in [3], page 6, Fig-
ure 5. The winning tickets seem to have a higher test accuracy. It is
found that the gap between the test and training error is smaller for
winning tickets implying that they generalize better. As in the case
of LeNet, in ConvNets, the test accuracy is worse with random reini-
tialization of the winning tickets. However, the test accuracy at early
stopping remains steady and may even improve for some layers in the
network.
It is noted by Frankle and Carbin that using dropout [23, 9] helps in-
creasing the test accuracy of the network. Here, dropout refers to up-
dating only a random part of the network for each training iteration.
When training on larger VGG and ResNet networks, Frankle and
Carbin found the architecture to be sensitive to the learning rate, and
warmup was required to find the tickets at a higher learning rate. When
using warmup, the learning rate is initially built up from 0 to the initial
learning rate over the course of a specified number of iterations. In the
case of a lower learning rate, the winning tickets seem to learn faster
than the original network in the beginning. This however soon slows
down due to the lower initial learning rate. On the other hand, they
perform faster when randomly reinitialized. This can be improved by
the introduction of the warmup strategy which in turn helps finding
winning tickets at a higher learning rate.
Figure 4 shows an overview of results on VGG-19 when iteratively
pruned and re-initialized, either randomly or with its original weights.
From these graphs, it can be seen that the lottery ticket approach at an
initial learning rate of 0.1 and with a 10K iterations warmup performs
consistently better than the other approaches, and is able to maintain
the same level of accuracy down to approximatly 1.2% of the weights
remaining.

4.2 Experiments by Liu et al.

Liu et al. [16] claim that it is not necessarily better to reuse the
original weights of the network. Instead, random re-initialization
of the weights of the winning tickets can be enough to perform
on par with the original unpruned network and the “lottery ticket”
configuration
The main difference according to Liu et al. is the result when com-
paring unstructured pruning on CIFAR. For structured pruning, using
either higher or lower learning rates, the winning ticket approach does
not outperform the randomly re-initialized network.
In order to prove this, Liu et al. compare the models with Frankle and

Carbin’s approach as well as randomly re-initializing weights using
initial learning rates of 0.1 and 0.01, also using a step-wise delay
schedule and momentum SGD. These are then used on the CIFAR and
ImageNet datasets, the latter of which is a larger dataset. The pruning
methods used here are iterative pruning and one-shot pruning as used
by Frankle and Carbin and comparing them with L1-norm based filter
pruning. The values for the experiment are shown in Table 8 in [16].

20 40 60 80
%Prune ratio

91.0

91.5

92.0

92.5

93.0

93.5

94.0

Te
st
A
cc
ur
ac
y
(%
)

VGG-16

Winning Ticket lr=0.1
RandomInit lr=0.1
Winning Ticket lr=0.01
RandomInit lr=0.01

20 40 60 80
%Prune ratio

88

89

90

91

92

93

94

Te
st
A
cc
ur
ac
y
(%
)

ResNet-50

Winning Ticket lr=0.1
RandomInit lr=0.1
Winning Ticket lr=0.01
RandomInit lr=0.01

(a)IterativePruning

20 40 60 80
%Prune ratio

91.0

91.5

92.0

92.5

93.0

93.5

94.0

Te
st
A
cc
ur
ac
y
(%
)

VGG-16

Winning Ticket lr=0.1
RandomInit lr=0.1
Winning Ticket lr=0.01
RandomInit lr=0.01

20 40 60 80
%Prune ratio

87

88

89

90

91

92

93

Te
st
A
cc
ur
ac
y
(%
)

ResNet-50

Winning Ticket lr=0.1
RandomInit lr=0.1
Winning Ticket lr=0.01
RandomInit lr=0.01

(b)One-shotPruning

Fig. 5: From [16], page 11, Figure 7: “Comparisons with the Lottery
Ticket Hypothesis [3] for iterative/one-shot unstructured pruning [5]
with two initial learning rates 0.1 and 0.01, on CIFAR-10 data set.”

From Figures 4 and 5 we observe that in the case of unstructured prun-
ing, the winning ticket method of assigning the original weights to the
subnetwork works better in comparison to the randomly reinitialized
subnetwork if the learning rate is small. In the case of structured prun-
ing, the winning ticket performs on par with the randomly reinitialized
subnetwork.
Liu et al. argue that the reason why the winning ticket approach is
helpful at low learning rate may be that the weights of the final trained
model are not too far from original initialization due to the small pa-
rameter step-size.

4.3 Additional experiments

In our own experiments, we put the two main re-initialization ap-
proaches to the test. The test (validation) accuracies of our LeNet-
based model as described in Sec. 3 are plotted in Figure 6. The accu-
racy of the fully connected model, i.e. without pruning whatsoever, is
shown in the background as reference for the methods under investi-
gation. The pruned network that was used to potentially find winning
“lottery ticket” configurations is also regarded a model for reference
here as it represents classical pruning. We see that for all pruning
methods, the accuracy improves when pruning down to any density
of 5% or higher. At 2% and 1% the network seems be too sparse to
keep up with the accuracy of the original dense model. As for find-
ing “lottery tickets”, we see that only between densities 10% and 2%
this approach clearly stands out from the rest. Presumably, a network
that is still quite dense can easily find a good solution again with a
new random initialization. “Aggressive” pruning seems to be required
to make the winning lottery tickets reveal themselves. At the other
extreme however, we see that at 1% density the difference between
the two methods fades entirely. Both methods under-perform strongly
here, which is not surprising because this level of pruning almost guar-
antees that information from the input is lost to some extent. Another
interesting observation is that the pruning network seems to outper-
form all other models at the higher densities. We think this might be

SC@RUG 2020 proceedings

97

50% 33% 20% 10% 5% 2% 1%
Density (layer 6 & 7) after pruning

0.9750

0.9775

0.9800

0.9825

0.9850

0.9875

0.9900

Te
st

 a
cc

ur
ac

y
af

te
r t

ra
in

in
g

model: LeNet, training optimizer: Adam
parameters: 61,706

58,284 parameters in the pruned fully connected layers (6 & 7)

fully connected (average)
fully connected (±1)
pruning network
"lottery ticket"
random reinitialization

Test accuracies of various network models
after training

Fig. 6: Results of training and retraining our model for different levels
of sparsity after pruning. The measured test accuracies are displayed
as boxplots, where the box encompasses 50% of the measurements,
with a line denoting the median within. The “whiskers” represent the
full range of the data, except for outliers which are shown as separate
circles.

because the pruning network is not allowed to early-stop, while the re-
initialized models are. The extra training on the pruning network may
improve the test error, even though the training error is stable at 0. A
similar observation was made by Frankle and Carbin (see Sec. 4.1)
and we already discussed this general concept in Sec. 2.2. We can
substantiate this claim by looking at the training curves in terms of
the validation accuracy over the course of the training epochs. As can
be seen in Figure 7a, it is possible for the test accuracy to increase
in the pruning network over the course of many more epochs, while
the re-initialized models are not able to do this because they early-
stopped. In other cases, we observe that the pruning itself contributes
to an improved test accuracy. As can be seen in Figure 7b, the pruning
network benefits from the temporary disruption of the pruning itera-
tion and reaches higher accuracies than it would have if no pruning
would have been applied. This observation that pruning and the insta-
bility it generates may contribute to training was made earlier in [1] as
mentioned in Sec. 2.2.

5 DISCUSSION

Frankle and Carbin [3] observed that their approach of re-initializing
weights with their original weights was more effective than re-
initializing with random weights when using unstructured pruning.
For large models and higher learning rates, the warmup technique was
necessary to get better results than with random re-initialization. In
case of the lower learning rates, the pruned network learnt faster ini-
tially but slowed down over the course of learning due to the small
learning step.
Liu et al. [16] performed experiments to gain more evidence and ob-
served that the accuracy achieved when the subnetwork is randomly
reinitialized actually performs similar to that of the winning tickets.
Thus it is implied that the structure of the network is important rather
than the weights. They conjecture that this may occur because in Fran-
kle and Carbin’s experiments, the data set was small and the target
weights were closer to the values in the original network. Liu et al.
argue that the weights may introduce a large bias over the selection of
the winning ticket.

0 100 200 300 400 500
Epoch

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 a
cc

ur
ac

y

Density (layer 6 & 7) after pruning: 50%
pruning_network
lottery_ticket
random_reinit

Training process on various pruned network models

(a)

0 100 200 300 400 500
Epoch

0.970

0.975

0.980

0.985

0.990

0.995

1.000

Te
st

 a
cc

ur
ac

y

Density (layer 6 & 7) after pruning: 50%
pruning_network
lottery_ticket
random_reinit

Training process on various pruned network models

(b)

Fig. 7: Training process of the different pruned neural network models.
Two instances of training a 50% pruned network were selected which
showed interesting features as described in Sec. 4.3.

Drawing conclusions from both authors and our own experiments, we
can substantiate Frankle and Carbin’s hypothesis with the found evi-
dence. However, it is a challenging task to find the lottery tickets as
described. For various neural network models of different sizes and
complexities, more sophisticated learning methods are required. It is
unresolved whether it is always possible to find winning tickets in any
dense neural network, and if they exist as is claimed by Frankle and
Carbin. As was claimed by Frankle and Carbin, it is essentially only
possible to find lottery tickets beyond a certain level of sparsity. In
other words, networks that remain too dense after pruning will not re-
veal lottery tickets. This is something that we also saw in our own
experiments in Sec. 4.3.
So far, we have only seen evidence of applicability in relatively small
networks and when using a relatively low learning rate or a warmup
strategy. Indeed, applying the lottery ticket approach to larger and
deeper networks has proven harder than for their smaller and more
shallow counterparts. Frankle et al. recently published research [4] in
which they are able to create well-initialized sub-networks in a deep
Resnet-50 network, but only by re-initializing the weights to their val-
ues after they had already been trained for a short while. The required
training to get the weights in this desired state is admittedly quite lit-
tle, but it shows that it is significantly harder to apply the hypothesis
to these networks.
The lottery ticket hypothesis has already generated a decent amount
of follow-up research. This has helped to understand better by which
mechanisms the observed effects of the winning tickets work. A no-
table finding by Zhou et al. [25] is that the process of pruning itself
should be considered learning. This is well illustrated in Figure 8,
where we see that a “lottery ticket” that was found with Frankle and
Carbin’s method performs far above the statistical expectation, even
before any training. Merely selecting the lottery ticket from the over-
arching dense network is therefore a form of training. Zhou et al.
name these untrained lottery tickets “Supermasks”. Malach et al. [18]
worked on a similar theory: “a sufficiently over-parameterized neu-
ral network with random weights contains a subnetwork with roughly

An Analysis of Neural Network Pruning in Relation to the Lottery Ticket . . . – M.J. Havinga and R.S. Sawhney

98

Fig. 8: Networks tested on the MNIST data set. The networks
are untrained, i.e. have random weights, but a pruning mask is
applied to the second and third model. Taken from https://
eng.uber.com/deconstructing-lottery-tickets/, a
web page about [25].

the same accuracy as the target network, without any further training.”
This can be thought of as a stronger version of the lottery ticket hy-
pothesis, and Malach et al. claim to prove this stronger hypothesis
in their paper. Finding such a perfect subnetwork however, is a com-
putationally hard problem and only works in very over-parameterized
models. This problem can therefore be interpreted as a different take
on neural network training.

6 SUGGESTIONS FOR FUTURE WORK

The models on which the hypothesis has been applied are quite lim-
ited. The concepts contributed by Frankle and Carbin can be extended
and applied to many other situations. An interesting example of this is
the work by Rahul Mehta [19], who adapted the lottery ticket hypoth-
esis to transfer learning, creating the “Ticket Transfer Hypothesis”.
An open question remains the applicability of the hypothesis. In a
practical setting, it is usually not necessary to re-initialize the net-
work. Simple pruning and fine-tuning is sufficient to compress the
model and achieve the associated benefits. It would be interesting to
see more practical applications of the findings of Frankle and Carbin
and those inspired by it.
As discussed in Sec. 5, we can interpret pruning as a novel form of neu-
ral network training. An important direction for future work should be
to see how we can find ways to make use of both types of learning (i.e.
“regular” weight optimization and pruning) in the most effective way
to train models more efficiently and come up with better architectures.

ACKNOWLEDGEMENTS

The authors wish to thank Michael Biehl and Allessandro Pianese for
reviewing this paper. We would like to thank the Center for Infor-
mation Technology of the University of Groningen for their support
and for providing access to the Peregrine high performance comput-
ing cluster.

REFERENCES

[1] B. R. Bartoldson, A. S. Morcos, A. Barbu, and G. Erlebacher. The
generalization-stability tradeoff in neural network pruning. CoRR,
abs/1906.03728, 2019. URL https://arxiv.org/abs/1906.
03728. Accessed: February 2020.

[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press, Inc., USA, 1995.

[3] J. Frankle and M. Carbin. The lottery ticket hypothesis: Training pruned
neural networks. CoRR, abs/1803.03635, 2018. URL http://arxiv.
org/abs/1803.03635. Accessed: February 2020.

[4] J. Frankle, G. K. Dziugaite, D. M. Roy, and M. Carbin. The lot-
tery ticket hypothesis at scale. CoRR, abs/1903.01611, 2019. URL
http://arxiv.org/abs/1903.01611. Accessed: March 2020.

[5] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and con-
nections for efficient neural network. In C. Cortes, N. D. Lawrence, D. D.

Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28, pages 1135–1143. Curran Associates, Inc.,
2015.

[6] S. Haykin. Neural Networks and Learning Machines. Pearson Education,
Inc.,, Upper Saddle River, New Jersey 07458, USA, 3rd edition, 2009.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015. URL https://arxiv.
org/abs/1512.03385. Accessed: February 2020.

[8] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very
deep neural networks. CoRR, abs/1707.06168, 2017. URL https:
//arxiv.org/abs/1707.06168. Accessed: February 2020.

[9] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Improving neural networks by preventing co-adaptation of feature
detectors. CoRR, abs/1207.0580, 2012. URL https://arxiv.org/
abs/1207.0580. Accessed: February 2020.

[10] Z. Huang and N. Wang. Data-driven sparse structure selection for
deep neural networks. CoRR, abs/1707.01213, 2017. URL https:
//arxiv.org/abs/1707.01213. Accessed: February 2020.

[11] D. Kingma and J. Ba. Adam: A method for stochastic optimization. 3rd
International Conference for Learning Representations, 2015.

[12] A. Krizhevsky. Learning multiple layers of features from tiny images.
University of Toronto, Toronto, 2009.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86:2278 –
2324, 12 1998.

[14] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-
age. In D. S. Touretzky, editor, Advances in Neural Infor-
mation Processing Systems 2, pages 598–605. Morgan-Kaufmann,
1990. URL http://yann.lecun.com/exdb/publis/pdf/
lecun-90b.pdf. Accessed: February 2020.

[15] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters
for efficient convnets. CoRR, abs/1608.08710, 2016. URL https://
arxiv.org/abs/1608.08710. Accessed: February 2020.

[16] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the
value of network pruning. CoRR, abs/1810.05270, 2018. URL http:
//arxiv.org/abs/1810.05270. Accessed: February 2020.

[17] J. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep
neural network compression. CoRR, abs/1707.06342, 2017. URL http:
//arxiv.org/abs/1707.06342. Accessed: February 2020.

[18] E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. Proving the
lottery ticket hypothesis: Pruning is all you need, 2020. URL https:
//arxiv.org/abs/2002.00585. Accessed: March 2020.

[19] R. Mehta. Sparse transfer learning via winning lottery tickets. CoRR,
abs/1905.07785, 2019. URL https://arxiv.org/abs/1905.
07785. Accessed: March 2020.

[20] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive
bias: On the role of implicit regularization in deep learning. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop
Track Proceedings, 2015.

[21] R. D. Reed and R. J. Marks. Neural smithing: supervised learning in
feedforward artificial neural networks, chapter 13: Pruning Algorithms.
MIT Press, Cambridge, Massachusetts, 1999.

[22] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv 1409.1556, 09 2014. URL https:
//arxiv.org/abs/1409.1556. Accessed: February 2020.

[23] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15:1929–1958, 2014.

[24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? CoRR, abs/1411.1792, 2014. URL
http://arxiv.org/abs/1411.1792. Accessed: February 2020.

[25] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstruct-
ing lottery tickets: Zeros, signs, and the supermask. CoRR,
abs/1905.01067, 2019. URL https://arxiv.org/abs/
1905.01067. Related web page: https://eng.uber.com/
deconstructing-lottery-tickets/. Accessed: March 2020.

[26] M. Zhu and S. Gupta. To prune, or not to prune: Exploring the effi-
cacy of pruning for model compression. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview,
2018. URL https://openreview.net/pdf?id=Sy1iIDkPM,
Accessed: March 2020.

SC@RUG 2020 proceedings

99

An Overview of Workflow Scheduling Algorithms in Cloud

Nivin Pradeep Kumar and Siddharth Mitra

Abstract— Modern scientific applications exploit data from multiple sources. Most of these applications use workflows to model the
behavior of the application. Each activity of the workflow is mapped to a particular resource in a particular order to increase the overall
performance. The problem of scheduling these activities to the resources is referred to as workflow scheduling. It is an NP-complete
problem.
This paper focuses on solving the problem of efficiently running workflow scheduling algorithms in an IaaS based platform. The
scheduling algorithms consider various parameters which include, the pay-per-use billing service, satisfying QoS requirements of
the users, user-set deadlines and the data transfer costs between resources. We provide an overview of four workflow scheduling
algorithms - Particle Swarm Optimization (PSO), Evolutionary Multi-objective Optimization (EMO)-based algorithm, IaaS Cloud Partial
Critical Paths (IC-PCP) and a two-phase algorithm - IaaS Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2). While
the first two are meta-heuristic approaches, the latter two are heuristic approaches. These algorithms work according to different
scheduling objectives. We will dive deeper into these algorithms in this paper.

Index Terms—Workflow Scheduling, Cloud Computing, Infrastructure As a Service(IaaS)

1 INTRODUCTION

Over the past decade, we can observe a steady incline in the number
of large-scale applications hosted on cloud based platforms. What we
also observe, is an increase in the complexity of these applications. In
many cases, the applications involve distributed data sources as well as
data and computationally intensive activities. It is a common practice
to represent the applications as scientific workflows.

Traditional grid networks provide support for scheduling the work-
flows but since the advent of cloud computing, running the applica-
tions in a cloud-based environment has been proven to be more ben-
eficial. Over the years, cloud computing has been gaining popularity
and has become a platform for hosting large scale programs.

A workflow management system (WfMS)[6] is used to manage
these workflows when they’re made to run in a distributed envi-
ronment. A few grid based workflow management systems include
PEGASUS[2], ASKALON[3] and GrADS[4]. Three main reasons
why cloud based platforms are preferred to grid based environments
are:

• The ability to dynamically release and acquire resources on de-
mand. The customers are generally charged using a pay-as-you-
go-model. This helps the WfMS systems to scale resources ac-
cording to the budget and deadline requirements of the workflow.

• In cloud based platforms, resources can be directly allocated to
tasks. This serves as an advantage when compared to the clas-
sic best effort methods used to provide resources in grid based
environments.

• The cloud provides an illusion of unlimited resources. Hence,
the user is allocated a resource as and when required (a high
possibility of allocation).

Service Level Agreement (SLA) provided by cloud services allow
customers and cloud service providers to agree upon certain standards
to maintain minimum levels of service. With the help of SLAs, cloud
service providers define the Quality of Service(QoS) for the services
provided. QoS requirements focus on a variety of user-defined pa-
rameters such as budget constraints, workflow deadlines, security, etc.
When designing a workflow scheduling algorithm, these QoS require-
ments are taken into account. The cloud services generally charge the

• Nivin Pradeep Kumar is Master’s student in Computing Science at
University of Groningen, E-mail: n.pradeep.kumar@student.rug.nl.

• Siddharth Mitra is is Master’s student in Computing Science at University
of Groningen, E-mail: s.mitra.2@student.rug.nl.

customers by their QoS requirements and execution time. Apart from
trying to satisfy user defined QoS requirements, scheduling algorithms
also focus on scheduling objectives such as optimizing overall execu-
tion time or cost. Hence, workflow scheduling in an Infrastructure as
a Service (IaaS) based cloud environment is a challenging task since it
has a multi-objective nature.

In this paper, we provide an overview of four cloud - based
heuristics : Particle Swarm Optimization (PSO), Evolutionary Multi-
objective Optimization (EMO)-based algorithm, IaaS Cloud Partial
Critical Paths (IC-PCP) and a two-phase algorithm - IaaS Cloud Par-
tial Critical Paths with Deadline Distribution (IC-PCPD2). We study
the previous work done on these algorithms from three main sources,
[1],[5], and [7]. All four algorithms have different scheduling ob-
jectives. While the EMO-based algorithm focuses on optimizing the
makespan and cost of executing the workflow on the cloud, the PSO
based algorithm focuses on minimizing both computational cost and
data transmission cost. Both IC-PCP and IC-PCP2 scheduling algo-
rithms focus on minimizing the total execution time by satisfying a
user-defined deadline.

The remaining portion of the paper is organized as the following.
Section 2 describes the general workflow scheduling problem. Section
3 provides a brief explanation of the four scheduling algorithms. This
also includes the pseudo codes for the various algorithms. Section 4
compares the four algorithms on the basis of optimization strategy,
Scheduling objectives and time complexity.The paper is concluded
with section 5. All pseudo codes, equations and mathematical expres-
sions have been referenced from the above mentioned papers.

2 WORKFLOW SCHEDULE PROBLEM

A workflow can be represented as a Directed Acyclic Graph (DAG).
Each node of the graph represents a task in the workflow. The directed
edges of the graph represent control or data dependencies between the
tasks. Hence, a workflow(W) is a DAG with a finite set of tasks T =
{T0,T1,....,Tn} and a finite set representing the control/data dependen-
cies, D = {(Ti,Tj)—Ti,Tj∈ T}.

minF = (makespan,cost)t (1)

makespan = FT (Texit) (2)

Equation 1 shows the multi-objective function which contains two
conflicting objectives - makespan and cost. Makespan refers to the
time elapsed from the time at which the first task(Tentry) starts and the
time at which the last task(Texit) ends. The cost function varies across
the applications. It can include the total cost of executing the tasks
on different computational resources as well as the cost of transferring

100

data between resources. Figure 1 shows an example of a DAG which
contains five tasks, topologically sorted.

Fig. 1: An example of a workflow represented as a DAG

3 WORKFLOW SCHEDULING ALGORITHMS

3.1 Particle Swarm Optimization based Algorithm
The Particle Swarm Optimization (PSO) is a self-adaptive global
search based optimization method[5]. The logic behind the algorithm
is similar to Genetic Algorithms. The PSO technique does not use a
crossover operation to produce offsprings but instead relies on the so-
cial behaviour of the particles. In every generation, a local best and a
global best particle are selected. These particles influence the behav-
ior of the rest of the particles in the population. As a consequence, the
randomness within each particle is increased, aiding the algorithm to
converge to a pareto front.

Besides the properties of the workflow-DAG mentioned in Section
2, the PSO based algorithm adds a few more characteristics to the
DAG. These include a set of storage sites S ={1,.....,i} and a set of
compute sites PC ={1,....,j}. The aim of the algorithm is to minimize
the total cost of computation of an application workflow[5]. The cost
includes the cost of transferring data between computation resources.
The edge weight between two tasks ti and t j represents the size of
the data transferred between the two tasks. The algorithm makes the
following assumptions:

• The average computation cost of running a task on an instance
for a fixed time is known.

• The cost of transferring a unit data between two instances is
known.

The paper [5] describes the problem the PSO - based heuristic as find-
ing a task-resource mapping instance M, such that when estimating
the total cost incurred using each instance I j, the highest cost among
all the compute resources is minimized. The total cost of executing all
the tasks which are assigned to an instance I j is shown by Cexe(M) j in
equation 3. Ctx(M) j represents the total access cost between tasks as-
signed to the instance I j and the tasks which are not. This is shown by
equation 4. dM(k1),M(k2) represents the cost of transferring a unit data
between instance M(k1) and M(k2). As shown in Equation 5, Ctotal
shows the total cost for instance I j which includes the access cost as
well as the execution cost. The equation 6 is considered as the fitness
function.

Cexe(M) j = ∑
k

wk j ∀M(k) = j (3)

Ctx(M) j = ∑
k1∈T

∑
k2∈T

dM(k1),M(k2)ek1,k2 (4)

∀M(k1) = j and M(k2) = j

Ctotal(M) j =Cexe(M) j +Ctx(M) j (5)

Cost(M) = max(Ctotal(M) j) ∀ j ∈ P (6)

Minimize(Cost(M) ∀M) (7)

vk+1
i = ωvk

i + cirandi× (pbesti− xk
i)+ c2rand2× (gbest− xk

i), (8)

xk+1
i = xk

i + vk+1
i (9)

here:
vk

i velocity of particle i at iteration k
vk+1

i velocity of particle i at iteration k + 1
ω inertia weight
c j acceleration coefficients; j = 1, 2
randi random number between 0 and 1; i = 1, 2
xk

i current position of particle i at iteration k
pbesti best position of particle i
gbest position of best particle in a population
xk+1

i position of the particle i at iteration k + 1

Algorithm 1 represents a scheduling heuristic for the dynamic
scheduling of the tasks belonging to the workflow. This algorithm
works on the solution provided by the Particle Swarm Optimization
Technique by trying to optimize the cost of the task to resource
mapping.

Algorithm 1 Scheduling algorithm

1: Calculate average computation cost of all tasks in all compute re-
sources.

2: Calculate average cost of (communication/size of data) between
resources.

3: Set task node weight wk j as average computation cost.
4: Set edge weight ek1,k2 as size of file transferred between tasks.
5: Compute PSO(ti) /* a set of all tasks i k*/
6: repeat
7: for all \ready" tasks ti ∈ T do
8: Assign tasks ti to resources p j according to the solution pro-

vided by PSO
9: end for

10: all “ready” tasks
11: Wait for polling time
12: Update the ready task list
13: Update the average cost of communication between resources ac-

cording to the current network load
14: Compute PSO(ti)
15: until there are unscheduled tasks

The Algorithm 2 presents the steps for PSO to produce an opti-
mized task to resource mapping. In PSO, every solution which is part
of the population is considered as a particle. The initial population is
generated randomly. A fitness function is used to evaluate each par-
ticle of the current population. The function is optimized with each
new generation. Each particle in the population is aware of its own
best position pbest and the best position among the particles in the
current population, gbest. pbest is the best fitness value of the parti-
cle, achieved so far. gbest is the particle with the best fitness value in
the population. The values for the velocity and the position of each
particle is updated in each generation.

Algorithm 2 PSO algorithm

1: Set particle dimension as equal to the size of ready tasks in ti ∈ T
2: Initialize particles position randomly from PC = 1, ..., j and veloc-

ity vi randomly.
3: For each particle, calculate its fitness value as in Equation 4.
4: If the fitness value is better than the previous best pbest, set the

current fitness value as the new pbest.
5: After Steps 3 and 4 for all particles, select the best particle as

gbest.
6: For all particles, calculate velocity using Equation 6 and update

their positions using Equation 7
7: If the stopping criteria or maximum iteration is not satisfied, repeat

from Step 3.

SC@RUG 2020 proceedings

101

3.2 Evolutionary Multi-Objective Optimization Scheduling
Algorithm

As we saw in the previous section, the problem of workflow schedul-
ing has a multi-objective nature and is also known as a Multi-objective
Optimization Problem(MOP). A solution to the problem can be repre-
sented as a set containing three elements - (Ins, Type, Order).

Ins : T −→ I, Ins(Ti) = I j (10)

Type : I −→ P, Ins(Is) = Pt (11)

Ins is a function which maps a task to an instance in the cloud. Type is
a function that maps an instance in the cloud to an instance type. I is a
set of all the available instances in the cloud. Theoretically, this would
be an infinite set, since the cloud provides an illusion to the end-user of
unlimited resources. P is a finite set in which every element represents
a particular instance type the cloud offers as a service.

Order is a vector which contains the scheduling order of all the tasks
belonging to the workflow. The vector should satisfy the dependecy
constraints of each task. For instance, if Ti and Tj are tasks such that
Ti depends on Tj with respect to data or control, the task Tj should
appear before task Ti in the Order vector.

The logic behind evolutionary algorithms (EA) is driven by the the-
ory behind the process of natural evolution. As discussed earlier a
solution, i.e a (Ins, Type, Order) set is considered as a member of the
population. Let us observe the various Genetic Algorithm operations
provided in [7].

3.2.1 Encoding

To convert the solutions into population candidates the encoding oper-
ation is used. As discussed in section 3.2 a solution is a set containing
three elements - Order, Ins, and Type. Hence, the chromosome con-
tains three strings to represent the three elements of the solution. The
encoding process starts with the topological sorting of the nodes of the
graph. This depends on the data and control dependencies between
the nodes. For instance, the task Ti will have an index of i. The string
representing order contains a permutation of these indexes. The order
of the indexes in the string determines the order in which the hosting
instance of the tasks will be determined. If the index of task ti comes
before t j in the order string, then the hosting instance of ti is deter-
mined before task t j. It does not imply that task ti will be executed
before task t j. The other two strings are named task2ins and ins2type,
representing the ins and type relations respectively. The task2ins string
represents a size n vector, in which each task corresponds to a task
and the value stored inside that element is the index of the instance to
which the task is mapped to. Similarly, the third string ins2type is a
m-sized vector which maps an instance to its instance type. Figure 2
displays a representation of the encoding.

Fig. 2: Encoding

3.2.2 Initial Population
To have the genetic algorithms converge to a Pareto front, the ini-
tial chromosomes/solutions are generated using initialization methods.
The initial population includes two solutions which are generated by
known scheduling heuristics:

• HEFT: To generate the fastest workflow schedule.

• A slightly extended-HEFT algorith to generate the ”cheapest”
solution.

The rest of the solutions are generated randomly. Algorithm 3 shows
a procedure RandTypeOrIns contains the pseudocode for the same.

Algorithm 3 The RandTypeOrIns procedure

1: procedure RANDTYPEORINS
2: n← number of tasks
3: m← number of instance types
4: order← [0,1,,n−1]
5: ins2type← replicate(m,RandInt(0,m−1))
6: if Rand(0,1)< 0.5 then
7: task2ins← replicate(n,0)
8: else
9: for alli ∈ [0,n−1] do

10: task2ins[i]← RandInt(0,n−1)
11: end for
12: end if
13: sched← order, task2ins, ins2type
14: end procedure

3.2.3 Fitness Function
The fitness of a solution involves a trade off between the two ob-
jectives - makespan and cost. As discussed in section 2, calculating
the makespan involves calculating the finish time of the final task
taskexit .The cost function varies according to the platform-specific
charging model.

3.2.4 Crossover
To produce the next generation of the population, the solutions of the
current generation participate in what is known as a crossover process.
In this process, two parent solutions crossover to produce offsprings.
The crossover operator for the order vector is provided in Algorithm
4. A random cut-off point is selected which divides a parent string into
two substrings. The first substrings of both parents are then swapped
and the latter substrings discarded. (Steps 4 and 5). The parent order-
strings are then traversed again to append any missed out tasks to the
end of the first substrings. (Steps 6-10 and 11-15). Note that the new
strings formed do not violate the dependency constraints since the or-
der of any two tasks should have already existed in one parent.

Algorithm 4 Crossover for Order vector

1: procedure CROSSOVERORDER(A,B)
2: n← number of tasks
3: p← RandInt(0,n−1)
4: ordera← SubString(B,0, p)
5: orderb← Substring(A,0, p)
6: for all T in A.order do
7: if T not in ordera and T not in orderb then
8: append T to the end of ordera
9: append T to the end of orderb

10: end if
11: end for
12: end procedure

The crossover of the task2ins and ins2type take place together. Sim-
ilar to the crossover of the order string, a random cut-off point is cho-
sen which divides the two task2ins strings into two parts each. The

An Overview of Workflow Scheduling Algorithms in Cloud – Nivin Pradeep Kumar and Siddharth Mitra

102

first substrings are then swapped. Since the type of instance on which
the task is running is important information, the types of instances fol-
low the task. For instance, suppose a task T, which is running on an
instance I of type Ps is rescheduled to another instance I* of type Pr,
then the type of instance I* is changed from Pr to Ps. Note, the change
can potentially cause a break between other tasks and their correspond-
ing instance types. Say a task T ′ originally scheduled to instance I*
is not reassigned to any new instance, would prefer the instance I* to
have its previous type Pr. In case such a situation arises, the type of
instance I* is chosen randomly between Ps and Pr. For the crossover
of the task2ins and ins2type strings the pseudo code for the procedure
CrossoverIns is show in Algorithm 6.

The algorithm contains a procedure DecideType which decides on
the instance type of the new hosting instance of a task(T). This is done
before the swapping of the first substrings of the two parent task2ins
strings(step 7). In the DecideType procedure, the types of the in-
stance types of the new instance I’, from both individuals(A and B)
are taken.(Pa and Pb)(Steps 2-3). Step 3 is responsible for deciding on
whether the type of instance I* in B should be changed to Pa or not.
To do so, there should not exit a task in B with an index greater than
or equal to p-1 which is scheduled to I* then the type of I* is changed
to Pa with the addition of a small mutation to cause variation. Else, the
type will be randomly chosen between types Pa and Pb.

Algorithm 5 Crossover procedure for Task2Ins and Ins2type

1: procedure CROSSOVERINS(A,B)
2: n← number of tasks
3: p← RandInt(0,n−1)
4: for i←− 0, ..., p−1 do
5: DecideType(Ti,A,B, p)
6: DecideType(Ti,B,A, p)
7: Swap(A.task2ins[Ti],B.task2ins[Ti])
8: end for
9: end procedure
1: procedure DECIDETYPE(Ti,A,B, p)
2: I′←− A.task2ins[Ti]
3: Pa,Pb←− A.ins2type[I′],B.ins2type[I′]
4: if ∃ j : j ≥ p∧B.task2ins[T j] = I′ then
5: if Pa 6= Pb then
6: P←− RandChoice(Pa,Pb)
7: end if
8: else
9: B.ins2type[I′]←− Pa

10: Mutate Pa with a small probability
11: end if
12: end procedure

3.2.5 Mutation

The Mutation is performed to introduce variation in a solution. In this
case, Algorithm 4 shows the MutationOrder procedure. Taking T as
the starting point, the algorithm searches for a substring that contains
tasks that are neither predecessors nor successors of T (Steps 4-10).
The task T is then moved to a random new position inside the sub-
string(Steps 11-12). The search proceeds in both directions starting
from task T and stops when it encounters a task which is either a pre-
decessor or a successor of the task T.

Algorithm 6 Mutation in order vector

1: procedure MUTATEORDER(X , pos)
2: n← number of tasks
3: T ← X .order[pos]
4: start,end← pos
5: while start ≥ 0∧X .order[start] /∈ pred(T) do
6: start←− start +1
7: end while
8: while end < n∧X .order[end] /∈ succ(T) do
9: end←− end−1

10: end while
11: pos′←− RandInt(start +1,end−1)
12: Move T to pos′ in X .order
13: end procedure

3.3 IaaS Cloud Partial Critical Paths Scheduling Algorithm
(IC-PCP)

In this section, we give an overview of the IC-PCP algorithm with
some basic definitions. IC-PCP is a one-phase algorithm that has a
strategy similar to the deadline distribution phase of Partial Critical
Path(PCP). PCP algorithm was proposed for the utility Grid model
which has two main phases: Deadline distribution and planning. In
the deadline distribution phase, the overall deadline of the workflow
is distributed over individual tasks. The Planning algorithm schedules
the workflow by assigning each task to the cheapest service which
meets its subdeadline.

In IC-PCP, the change being the way subdeadlines are assigned to
the task of a critical path. The algorithm tries to schedule them by
finding an instance of a computational service which can execute the
entire path before its latest finish time.

3.3.1 Definitions
In this scheduling algorithm, we have two variables which represent
the start time of the tasks - the Earliest Start Time computed before
scheduling the workflow, and the start time which is calculated after
the task is scheduled. The Earliest Start Time of each scheduling task
ti is given as:

EST (ti) = max
tp∈t ′i sparents

{EST (tp)+MET (tp)+T T (ep,i)} (12)

where the Minimum Execution Time of a task ti, MET(ti), is the execu-
tion time of task ti on a service s j ∈ S which has the minimum expected
time ET(ti,s j) between all available services. The Critical Parent of a
node ti is the unassigned parent of ti that has the latest data arrival time
at ti, that is, it is the parent tp of ti for which EFT (tp)+T T (ep,i) is
maximal. The expected time (ET) is the amount of time required for
a schedule to complete its task. The Earliest Finish Time, EFT of an
unscheduled task ti and Latest Finish Time of an unscheduled task ti,
LFT(ti), can be defined as equation 13 and 14:

EFT (ti) = EST (ti)+MET (ti) (13)

LFT (Ti) = min
tp∈t ′i sparents

{LFT (tc)−MET (tc)−T T (ei,c)} (14)

The most important concept of IC-PCP is the concept of Partial Crit-
ical Path(PCP). It is important to define two important variables- As-
signed Node and Critical Parent to properly define PCP. In IC-PCP an
assigned node is a node that has already been assigned to a scheduled
service. The Critical Parent of a node ti is the unassigned parent of ti
that has the least data arrival time. The critical parent is computed in
such a way that EFT(tp) + TT(ep,i) is maximum.

3.3.2 IC-PCP Algorithm
The algorithm 7 depicts the pseudo-code of the overall IC-PCP al-
gorithm for scheduling a workflow. The first four lines of the algo-
rithm show the initialization involved. The algorithm sets the actual
start time of dummy nodes tentry and texit and marks them as assigned.

SC@RUG 2020 proceedings

103

AST(texit) is set to the user’s deadline which is the actual exit nodes
of the workflow. Lastly, the AssignParents procedure is called for texit
which schedules all the unassigned parents of its input node. It will
schedule all workflow tasks. We have given more insight on this pro-
cedure in the next section.[1]

Algorithm 7 The IC-PCP Scheduling Algorithm

1: procedure SCHEDULEWORKFLOW(G(T,E),D)
2: determine available computational services
3: add tent ry, texit and their corresponding dependencies to G
4: compute EST(ti), EFT(ti), and LFT(ti) for each task in G
5: AST(tent ry)← 0, AST(texit)← D
6: mark tent ry and texit as assigned
7: call AssignParents(texit)
8: end procedure

3.3.3 Parents assigning algorithm
The pseudo-code for AssignParents is given in Algorithm 8. The input
of the algorithm is an assigned node which schedules all of its unas-
signed parents before the start time of the input node. The algorithm
finds the PCP of the input node. In the first call of the algorithm, it
begins with texit and follows back the critical parents until it reaches
tentry to find the overall critical path of the workflow algorithm.

In the next step, the algorithm calls procedure AssignPath which
gets a path (an ordered list of nodes) as input and schedules the whole
path on the cheapest service which can finish each task before its lat-
est finish time. We have explained more on this in the next section.
When a task is scheduled, the ESTs, EFTs of the successors and the
LFTs of its predecessors may change, due to this the algorithm updates
these values for all tasks of the path in the next loop. After that, the
algorithm begins to schedule the parents of each node on the partial
critical path, from the beginning to the end of the path, by calling the
procedure recursively.

Algorithm 8 Parents Assigning Algorithm

1: procedure ASSIGNPARENTS(t)
2: while (t has an unassigned parent) do
3: PCP← null, ti ← t
4: while (there exists an unassigned parent of ti) do
5: add CriticalParent(ti) to the beginning of PCP
6: ti ← CriticalParent(ti)
7: end while
8: call AssignPath(PCP)
9: for all (ti ∈ PCP) do

10: update EST and EFT for all successors of ti
11: update LFT for all predecessors of ti
12: call AssignParents(ti)
13: end for
14: end while
15: end procedure

3.3.4 Path Assigning algorithm
AssignPath algorithm shown in Algorithm 9 receives a path as input
and schedules all of its tasks on a single instance of a computation ser-
vice. The condition of the minimum price which can finish each task
before its latest finish time is followed. Since all the tasks of the path
are scheduled on the same instance, the data transfer time becomes
zero, but the data transfer of the outside tasks have to be considered.
The algorithm tries to schedule the entire path on the cheapest existing
instance for the input path. An instance is applicable if it satisfies the
following conditions:

• The scheduled path on the instance should be such that each task
of the path is finished before its latest finish time.

• The new schedule uses the extra time of the instance, which is
the last remaining time of the last interval of that instance.

Algorithm 9 Path Assigning Algorithm

1: procedure ASSIGNPATH(P)
2: si j ← the cheapest applicable existing instance for P
3: if (si j is null) then
4: launch a new instance si j of the cheapest service si which

can finish each task of P before its LFT
5: end if
6: schedule P on si j and set SS(ti), AST(ti) for each ti ∈ P
7: set all task of P as assigned
8: end procedure

There are three main things to consider in this algorithm. Firstly,
to schedule a path on an existing instance, the algorithm follows two
cases - If the instance executes one of the children of the last task
of the path, it tries to schedule the entire path right before that child
by shifting forward the children and its successors on that instance.
Otherwise, the algorithm considers to schedule the path before the start
time of the first task of the instance and after the finish time of the last
task of the instance. Secondly, the cost of using an existing instance for
the input path will be equal to the sum of the new time intervals which
are added to the instance for executing the inputting path. Thirdly, if
the existing instance executes the parent of a task which belongs to the
input path, the data transfer time between them becomes zero when
considering that instance for execution of the input path.

3.4 IaaS Cloud Partial Critical Paths with Deadline Distri-
bution Scheduling Algorithm (IC-PCPD2)

IC-PCPD2 algorithm has two phases: Deadline distribution and Plan-
ning. In the deadline distribution phase, the overall deadline of the
workflow is distributed over individual tasks, and in the planning phase
each task is scheduled on an instance of a computation service ac-
cording to its assigned sub deadline. On the whole, the structure of
the algorithm is similar to Algorithm 7, a new line is introduced to
procedure Planning after calling AssignParents. However, in the IC-
PCPD2 algorithm, a strategy similar to the IC-PCP algorithm is used,
the AssignParents procedure tries to assign subdeadlines to all unas-
signed parents of its input node. The planning procedure carries out
the actual scheduling of each task on the cheapest instance that can
execute the task before its sub deadline. Furthermore, the initializa-
tion of the algorithm is little different, the sub deadlines should be
initialized to the same value which means sub deadlines(tentry) ← 0
and subdeadlines(texit) ← D. We have explained more on this in the
upcoming sections.

3.4.1 Parents assigning algorithm
The AssignParents algorithm is similar to Algorithm 8. The main
change is when the procedure AssignPath is called, it assigns subdead-
lines to all unassigned parents of its input node, instead of scheduling
them on a service. The next difference is the concept of the assigned
node, which is a node that has already assigned a subdeadline.

3.4.2 Path assigning algorithm
A path, P = {t1, ..., tk}, is passed as an input to the AssignPath algo-
rithm. The algorithm assigns subdeadlines to each of its nodes. The
algorithm, tries to fairly distribute the path subdeadline among all tasks
of the path in proportion to their minimum execution time. The path
subdeadline, PSD, is defined as the difference between the latest finish
time of the last task, and the Earliest Start Time of the first task on
the path. The subdeadline of each task ti can be defined as shown in
equation 15 and 16

PSD = LFT (tk)−EST (t1) (15)

subdeadline(ti) =
EFT (ti)−EST (t1)
EFT (tk)−EST (t1)

×PSD (16)

The AssignPath algorithm first computes the subdeadline of each
task of the input path using the first equation, and then marks them as
assigned nodes.

An Overview of Workflow Scheduling Algorithms in Cloud – Nivin Pradeep Kumar and Siddharth Mitra

104

3.4.3 Planning algorithm
The planning algorithm is depicted in Algorithm 10, which selects the
cheapest available instance for each task that can finish the task before
its subdeadline. In each stage, the algorithm selects a ready task, a task
whose parents have already been scheduled, and schedules it on the
cheapest applicable existing instance. The definition of an applicable
instance for a task is similar to its definition described in Section 3.3.4.
The cost of using the extra time of an existing instance is considered
to be zero. If the algorithm cannot find an applicable existing instance,
it produces a new instance of the cheapest service which can finish the
task before its subdeadline, and schedules the task on the new instance.
This procedure repeats until all the tasks are scheduled.

Algorithm 10 Planning Algorithm

1: procedure PLANNING(G(T,E))
2: Queue← tent ry
3: while (Queue is not empty) do
4: t← delete first task from Queue
5: Si j ← the cheapest applicable existing instance for P
6: if (Si j is null) then
7: launch a new instance Si j of the cheapest service Si

which can finish t before its subdeadline
8: end if
9: schedule t on Si j and set SS(t) and AST(t)

10: for all (tc ∈ children of t) do
11: if (all parents of tc are scheduled) then
12: add tc to Queue
13: end if
14: end for
15: end while
16: end procedure

4 COMPARISON

The table 1 shows the comparison of workflow scheduling algorithm
discussed in the paper.

Workflow
Algorithms

Optimization
strategy

Scheduling
Objectives

Time com-
plexity

Particle Swarm
Optimization

Meta-
Heuristic
method

Minimizes both
computational
cost & data
transmission cost

O(n2)

Evolutionary
Multi-objective
Optimiza-
tion based
Algorithm

Meta-
Heuristic
method

Optimizes both
makespan & cost

O(kgn2)
[7]

IaaS Cloud
Partial Crit-
ical Paths
(IC-PCP)

Heuristic
method

Minimizes the
total execution
time by satisfying
a user defined
deadline

O(n2) [1]

IaaS Cloud
Partial Crit-
ical Paths
with Deadline
Distribution

Heuristic
method

Minimizes the
total execution
time by satisfying
a user defined
deadline

O(n2) [1]

Table 1: Table to test captions and labels

5 CONCLUSION AND FUTURE WORK

In this paper, we have given an overview of different heuristic
and meta-heuristic workflow scheduling algorithms. We have also
summarized the similarities and differences of each algorithm. The

following is a brief summary on each algorithm.
PSO: PSO takes into account both computation cost and data
transmission cost. The PSO algorithm is similar to other evolutionary
algorithms. It takes into account communication costs of all the
tasks, including dependencies between them. PSO distributes tasks
to resources according to the size of data. It balances the load on
compute resources by distributing tasks to available resources. PSO
minimizes the maximum total cost of assigning all tasks to resources.
The PSO algorithm has a time complexity of O(n2).
Evolutionary Multi-objective Optimization based Algorithm: The
algorithm optimizes both makespan and cost as a Multi-objective
Optimization Problem (MOP). It is a suitable scheduling algorithm
for most of the workflows which takes into account the instance-based
IaaS computing and cloud - specific pricing models. The algorithm
provides different trade-offs between cost and time, so that users can
choose acceptable schedules according to their preferences. This
algorithm is highly promising and has wide range of application.
IC-PCP: IaaS Cloud Partial Critical Paths is a one-phase algorithm.
It has a polynomial time complexity. IC-PCP performs better than
IC-PCPD2 in many cases. The algorithm aims to create a schedule
that minimizes the total execution cost of a workflow, while satisfying
a user-defined deadline. The main difference between IC-PCP and
IC-PCPD2 is that IC-PCP schedules the workflow in one phase
by scheduling each partial critical path on a single instance of a
computation service.
IC-PCPD2: IaaS Cloud Partial Critical Paths with Deadline Distribu-
tion is a two-phase algorithm. Just like IC-PCP, this algorithm also
has a polynomial time complexity. IC-PCPD2 first distributes the
overall deadline on the workflow tasks and then schedules each task
based on its subdeadlines. Both algorithm IC-PCP and IC-PCPD2 has
O(n2) time complexity.

As part of our future work, we would like to combine these heuristic
and meta-heuristic algorithms to produce a hybrid approach. A heuris-
tic algorithm can be used for the initialization of the meta-heuristic
method and hence creating a better starting point for the algorithm.

ACKNOWLEDGEMENTS

The authors wish to thank the University of Groningen for providing
the material, guidance and support for writing this paper. We’d also
like to thank Nafiseh Soveizi for her support.

REFERENCES

[1] S. Abrishami, M. Naghibzadeh, and D. H. Epema. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds. Fu-
ture Generation Computer Systems, 29(1):158–169, 2013.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, et al. Pegasus: A frame-
work for mapping complex scientific workflows onto distributed systems.
Scientific Programming, 13(3):219–237, 2005.

[3] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Sid-
diqui, H.-L. Truong, A. Villazon, and M. Wieczorek. Askalon: A grid ap-
plication development and computing environment. In The 6th IEEE/ACM
International Workshop on Grid Computing, 2005., pages 10–pp. IEEE,
2005.

[4] G. Juve, M. Rynge, E. Deelman, J.-S. Vöckler, and G. B. Berriman. Com-
paring futuregrid, amazon ec2, and open science grid for scientific work-
flows. Computing in Science & Engineering, 15(4):20–29, 2013.

[5] e. a. Pandey, Suraj. A particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing environments. 24th
IEEE international conference on advanced information networking and
applications, 2010.

[6] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. E. Dobson, and
K. Chiu. A grid workflow environment for brain imaging analysis on dis-
tributed systems. Concurrency and Computation: Practice and Experi-
ence, 21(16):2118–2139, 2009.

[7] Z. Zhu, G. Zhang, M. Li, and X. Liu. Evolutionary multi-objective work-
flow scheduling in cloud. IEEE Transactions on parallel and distributed
Systems, 27(5):1344–1357, 2015.

SC@RUG 2020 proceedings

105

Consensus mechanisms to manage faults in Distributed Ledger
Technologies
Group - 25

Sina Rouzbahani (S4121589)
Shivam Mutreja (S3926575)

Abstract—A distributed ledger is a decentralized database that is distributed across several nodes. In this technology, every node in
the network operates autonomously and will maintain the ledger, and if any data changes, the ledger will get updated.
Among various core components, the consensus protocol is the defining technology behind the security and performance of any
distributed ledger technology. An important subset of distributed ledger technology is the blockchain network which is created to record
transactions or digital interactions and deliver transparency, efficiency, and also provide security for businesses. Many consensus
algorithms have been proposed to improve the performance of the blockchain network. Various design choices in the consensus
protocol can greatly impact a blockchain system’s performance, including its transaction capacity, finality, and fault tolerance.
With more and more blockchain consensus mechanisms being proposed, there is a need to analyze and formally compare them. In
the paper, our focus is on private permissioned networks and we will discuss a few famous consensus algorithms such as Algorand,
Ouroboros, RAFT, and BFT and the best way that the algorithms perform. Also, we will investigate the criteria such as, robustness,
finality, throughput and fault tolerance, under which the algorithms perform well and make comparisons between them.

Index Terms— Consensus, Distributed Ledger Technologies (DLT) , Algorand, Ouroboros, RAFT, BFT.

1 INTRODUCTION

Distributed Ledger Technologies (DLT) have revolutionized the world
by transforming the existing systems to become more secure, reliable
and scalable. Generally, DLTs are designed to deal with database in
the form of data shared in a distributed manner, and blockchain rep-
resents one possible DLT to do it. It forms a system that provides a
trustworthy ledger among a group of nodes across a network that does
not fully trust each other.

Now, if the nodes cannot be trusted, it is important to think about
adversaries and fault tolerance. Also, even if the nodes can be trusted,
how do the nodes reach an agreement about which transaction to ac-
cept. Here comes the role of consensus mechanism. In simpler terms,
the consensus is a dynamic way of reaching an agreement in a group.
While voting just settles for a majority rule without any thought for the
feelings and well-being of the minority, a consensus, on the other hand,
makes sure that an agreement is reached which could benefit the entire
group as a whole. A method by which consensus decision-making is
achieved is called consensus mechanism [10].

Consensus algorithms play an essential role to achieve reliability in
large-scale systems because they can provide a coherent and consistent
group work among a set of machines [17]. In this paper, we will dis-
cuss various consensus algorithms, such as RAFT, BFT, Algorand and
Ouroboros. We will focus on understanding how each algorithm works
and in which situation or network is it suitable to use. We will then
compare these algorithms based on a few criteria, namely, robustness,
finality and throughput and provide the advantages and disadvantages
of each algorithm.

The rest of the paper is organized as follows: Section 2 provides a
background of some explanation that we will use in the other sections
and the Byzantine generals’ problem, Section 3 describes some fa-
mous consensus algorithms and divides each of them into three parts,
one part talks about the working which also covers how the algorithm
deals with Fault Tolerance, the other part of the section mentions the
transactions per second the algorithm is able to perform. Section 4 dis-
sects a comparison between algorithms and in Section 5 we conclude
what we explained in this paper.

• E-mail: s.mutreja@student.rug.nl
• E-mail: s.rouzbahani@student.rug.nl

2 BACKGROUND

Although the terms blockchain and DLT have been used interchange-
ably between people these days, there is a detailed difference between
them. The main difference being that the blockchain is a subset of
DLTs and there are other kinds of the ledger. The other difference is
that the blockchain is a sequence of blocks while DLTs do not neces-
sarily need such a chain. To drive such a technology where the nodes
are distributed, one needs a mechanism to reach agreement among the
nodes. Thus, the consensus protocol is the defining technology in any
DLTs.[3].

Selecting the wrong consensus algorithm may condition the effi-
ciency, performance, transaction rate, potential vulnerabilities, costs
of the product. We investigated an effective algorithm that can guar-
antee transparency and reliability between nodes in the network.

To single out one such consensus algorithm that should be used
while developing one’s own distributed ledger solution is practically
not feasible. It depends on various factors such as, solution availabil-
ity, which tells the directed audience for the solution that us being
developed. It can be different for a private solution (e.g. organiza-
tion) and different for a public solution (e.g. Bitcoin). It also depends
on the nature of the solution being developed, if the solution requires
the users with high stakes in the organization to be more powerful or
users that have been loyal (w.r.t time) to the organization to hold more
decision making rights. Thus, we will explain the aforementioned con-
sensus algorithms in the next section and discuss possible flaws for the
readers to make a decision on which algorithm to use.

But before delving into the consensus algorithms we shall under-
stand a fundamental problem in distributed computing i.e. to achieve
overall system reliability in the presence of s faulty processes. This
problem is very well known as Byzantine Generals’ Problem. [14]

2.1 Byzantine Generals’ Problem

First, the section discusses about the unsolvable Two Generals Prob-
lem. Then, we will extend our learning to the Byzantine Generals’
Problem.

Let us consider a scenario in which there are two generals who aim
to destroy the enemy laying siege on different fronts. We will assume
General 1 as the leader and General 2 as the follower. If they want
to beat the enemy they should attack at the same time. For this to
happen they must communicate the time of the attack, this brings us

106

Fig. 1. Page 3, The Byzantine Generals Problem [14].

Fig. 2. Page 7, The Byzantine Generals Problem [14].

to the most important aspect, communication. For them to attack the
enemy at the same time they devise a plan to send a messenger across
the enemy’s camp who will deliver the time of the attack to the fol-
lower. Now, the follower has to send an acknowledgement that he has
received the message and is ready to attack.

However, in this simple yet strange scenario, there is a possibility
that the enemy captures the messenger and the message is never deliv-
ered to the follower. If this happens, they would never attack. In the
latter scenario, if the enemy gets hold of the messenger and sends a
different message, they won’t be able to attack together, thus lose the
battle. The Two Generals Problem has been proven unsolvable.

Byzantine Generals’ Problem is a generalized version of the Two
Generals’ Problem, but, with a catch. It addresses the same scenario
but with more than just two generals, i.e. more than two generals need
to agree on the same time to attack the enemy. The added complica-
tion is easy to understand as in a real-world scenario, more than one
general can be a traitor. As Leslie Lamport stated in [14]: ”The leader-
follower setup described in the Two Generals Problem is transformed
to a commander-lieutenant setup. In order to achieve consensus here,
the commander and every lieutenant must agree on the same decision.”

Referring to figure 1 which is used by Leslie Lamport in [14], let
us add an extra condition to IC2, what if the commander is a traitor,
consensus must still be achieved. In this case, for the algorithm to
reach consensus the value of the majority of votes/decisions a general
observes is important. Thus, all generals take the majority vote.

Oral Message OM(m)
As stated by Leslie Lamport in [14]: ”For any m, Algorithm OM(m)
reaches consensus if there are more than 3m generals and at most m
traitors.”

Referring to figure 2, the only way to reach consensus is by having
at least 2

3 or more honest network nodes. And because of this con-
dition, the system is susceptible to attacks in case the majority of the
nodes decide to attack the network. (such as the 51 % attack)

If we apply our learning to the context of distributed ledger tech-
nologies, each general represents a node in the network, and the nodes
need to reach consensus on the current state of the system. If we gen-
eralize the idea, the majority of participants in a distributed network
must agree on the same action in order to achieve consensus and avoid
network failure.

2.2 Paxos
Paxos is one of the many protocols responsible for achieving consen-
sus in a distributed network. Paxos is actually the oldest consensus
protocol and was presented by Leslie Lamport in 1989 through her pa-
per [13]. The abstract of the paper published by Leslie Lamport, just
contains a single line - ”The Paxos algorithm, when presented in plain
English, is very simple” [13].

The nodes in a network running the Paxos protocol has three major
roles, namely, Proposers, Acceptors and Learners. The point of the
aforementioned roles is to agree on a single value. The protocol works
in two phases, namely, Promise and Commit.

To understand how this works, let us assume that we have 5 nodes in
a network and a client wants to get hold of a lock (think of this as a key
to your car). If one person (can be any device) has the lock that means
nobody can access the device (in this case the car). The client would
ask one of the 5 nodes to provide it with the lock. Now, one node, the
proposer, would propose that the lock is provided to the client to the
other nodes, namely, Acceptors. This is known as a prepare request.
Consider a network partition and there are two Proposers sending a
prepare request, how would one differentiate? That is why each pre-
pare request contains a version number attached to it. Now, when the
acceptor receives a prepare request, it will respond to the proposer with
a promise to decline all the other requests with a lower version num-
ber. This is known as the promise phase. Once, the proposer receives
the responses from the majority of the acceptors it will send an accept
request to each of the acceptors with the same version number. This is
known as the commit phase. Before the commit, though the acceptors
will check whether they have responded to another prepare request
with a higher version number or not, if they have they won’t accept
the accept request. On the other hand, if they respond positively to the
accept request the value is committed and the value is broadcasted to
all the other nodes, the learners. This process can go on for a while
before a value is accepted. The proposer might not get a majority on
the proposed value. But eventually, if the majority of the nodes are
alive Paxos will help the network reach consensus.

2.3 Proof of Work

A Proof of Work (PoW) system (or protocol, or function) is a consen-
sus mechanism which is developed to prevents denial service attacks
and other service misuses such as spam on a network by requiring
some work from service user i.e computational time. The concept
was invented by Cynthia Dwork and Moni Naoras presented in a 1993
journal article[6].

PoW is used in a lot of cryptocurrencies that Bitcoin is the most
famous one. And also, PoW is used to verify transactions and broad-
cast new blocks in the blockchain. There is a competition between mi-
nors on the network to complete transactions or solving computational
(Cryptographic) puzzles in the network with PoW. Once a minor can
succeed, he can broadcast the block to the network and all the other
miners verify the solution is correct. PoW also helps the network to
defence against various external attack. One of the disadvantages of
PoW is that mining claim high computational power and it is expen-
sive. Also, it consumes a large amount of electricity. Due to that, PoW
is not the most sufficient consensus mechanism. [19].

2.4 Proof of Stake (PoS)

Some problems in Proof of Work led to another consensus mecha-
nism which is known as Proof of Stake (PoS) which has no miners,
instead, it has Validators or Stakeholders which have a certain amount
of money as a deposit i.e. coin ownership on the network known as
”Stake” and they are not chosen randomly and also participants are not
allowed to mine a new block, instead they forge new blocks. The more
money deposit, The more possibility to be chosen to forge new block
and each chosen node checks whether all the transactions are valid. In
comparison to PoW, PoS is more fair, decentralized and secure [1].

3 ALGORITHMS

A consensus algorithm is a way to reach an agreement about the state
of the ledger among various nodes in a distributed network. In this
way, consensus algorithms achieve reliability in the distributed net-
work and establish trust between unknown nodes in a distributed com-
puting environment.

In this section, we will investigate the four different consensus al-
gorithms namely, RAFT, BFT, Algorand and Ouroboros. Also, study
about how they work and consider their performance as well.

SC@RUG 2020 proceedings

107

3.1 RAFT
Raft is a distributed consensus algorithm that was designed to be eas-
ily understood. The goal of Raft consensus algorithm is different from
the typical consensus algorithms which agree on a single value. Raft
focuses on agreeing on the order in which the operations are commit-
ted to a replicated log. A replicated log basically stores the status of
various nodes in the network. It solves the problem of getting multiple
nodes to agree on a shared state even in the case of failures.

3.1.1 Terminology
• Replicated State Machine - A set of nodes keep identical copies

of the same state and can continue operating even if some of the
nodes are down. Replicated state machines are used to solve a
variety of fault tolerance problems in distributed systems. [18]

• Leader - A leader is elected by all the other nodes. At any point
in time, there can be at most one leader. [7]

• Follower - Follower nodes maintain sync with the leader at reg-
ular time intervals. If and when the leader node goes down, one
of the followers can contest an election to become the leader.

• Candidate - At the time of contesting an election, the nodes can
ask other nodes for votes. The nodes asking for votes to be a
leader are candidates. Initially, all the nodes are followers. [7]

It is equivalent to the Paxos algorithm proposed for building crash
tolerant systems in terms of its fault tolerance properties and perfor-
mance but is simpler to understand and implement. As Titus von
Köller stated in [21]: ”Additionally, the implementation of Paxos in
real-world systems has brought on many challenges, problems that are
not taken into account by the underlying theoretical model of Paxos.”
A fundamental difference between Raft and Paxos is that Raft imple-
ments strong leadership. Raft integrates leader election as an essential
part of the consensus protocol. All the decisions within the protocol
are made by the leader once the leader is elected.

3.1.2 Working
A node can exist in three possible states at one time, namely, leader,
follower, or candidate. To tackle problems with clock synchronization
in asynchronous systems, where the messages can have arbitrary de-
lays, Raft uses a logical clock in the form of terms. Logical time in
Raft divides time into terms of arbitrary length, each of them begin-
ning with an election. If a candidate node wins the election, it remains
the leader for the remainder of the term. In case of a vote split, the
term would end without a leader.

Each term is identified by a monotonically increasing number,
called term number [21]. Each server stores the current term number
which is also exchanged in every communication.

Leader election - There are two types of timeouts in Raft, one is
known as election timeout, it is the amount of time the follower waits
until becoming a candidate. The election timeout is randomized to
be between 150ms and 300ms for different nodes. After the election
timeout the follower becomes a candidate and starts a new election
term. The candidate votes for itself and sends out a vote request to the
other nodes. If the receiving node hasn’t voted yet in this term then
it votes for the candidate and the node resets its election timeout [21].
Once a candidate has a majority of votes it becomes the leader.

Now, the leader begins to send out Append Entries messages from
the client to its followers, these messages are sent in the intervals
specified by the heartbeat timeout. The followers then respond to the
Append Entries messages and so on, until a follower stops receiving
heartbeats and becomes a candidate. This is when the term ends. In
case the leader dies due to network partition or some other reason, the
other nodes wait for the election timeout and one of them becomes the
candidate. If both the remaining nodes become the candidate at the
same time, i.e. have the same election timeout, the election timeout
starts again as they cannot reach the majority.

Log Replication - Once the leader is elected, all the changes need
to be replicated to all the nodes in the system. The same Append

Fig. 3. transaction submit rate of 9.61 tps and transaction commit rate
of 8.07 tps

Entries message that was used for heartbeats is used to replicate the
changes. First, a client sends a change entry to the leader, the change is
appended to the leader’s log. Then, the change is sent to the followers
on the next heartbeat. [18] An entry is committed once a majority of
followers acknowledge it and finally, a response is sent to the client.

Raft can stay consistent even in the face of network partitions. If
there’s a network partition, the node with lower election term will see
the higher election term and step down and will roll back their uncom-
mitted entries and match the new leader’s log. This is how the log
stays consistent throughout the cluster.

3.1.3 Analysis

The following analysis is done after configuring RAFT mechanism in
the Hyperledger Sawtooth blockchain. The experiment was conducted
on a MacBook Pro, 2.3 GHz Intel Core i5 processor and 8 GB 2133
MHz LPDDR3 RAM. Docker containers were used to run the exper-
iment and the configuration was made possible by following the offi-
cial Sawtooth setup guide [4]. We create and submit 10 batches of a
transaction and the batch submission rate we get is - 252.66 batch/sec.
Referring to 3, if we continuously send in batches with a workload of
10 batches per second, we get a transaction submit rate of 9.61 tps and
transaction commit rate of 8.07 tps.

• Raft is easier to implement than other alternatives, primarily the
Paxos, because of a more targeted use case segment, assumptions
about the distributed system.

• The leader election mechanism employed in the Raft is so de-
signed that one node will always gain the majority of votes
within a maximum of 2 terms.

• Raft is strictly single Leader protocol. Too much traffic can
choke the system.

• Raft is Crash Fault Tolerant meaning the system can still cor-
rectly reach consensus if components fail but not Byzantine Fault
Tolerant, which means that the network can do its job even in the
presence of malicious actors.

The important features of Raft are election safety and leader append
only. Raft is intended for use in a relatively small cluster of nodes of
around five or less. Also, the transaction finality, ensures we don’t get
forks that would slow down.

3.2 BFT

Byzantine Fault Tolerance is the characteristic which defines a sys-
tem that tolerates the category of failures that belong to the Byzantine
Generals’ Problem [12]. Generally speaking, Byzantine Fault Toler-
ance(BFT) is the feature of a distributed network to reach consensus
even when a number of the nodes within the network fail to respond

Consensus mechanisms to manage faults in Distributed Ledger Technologies – Sina Rouzbahani and Shivam Mutreja

108

Fig. 4. PBFT consensus in which C is the client. S0 is primary server
leader. S1,S2,S3 are replica servers and also it shows PBFT can toler-
ate one Byzantine failure when N = 4 [22].

or respond with incorrect information. The objective of a BFT mech-
anism is to safeguard against the system failures by employing collec-
tive decision making which aims to reduce to influence of the faulty
nodes.

Practical Byzantine Fault Tolerant (PBFT) extends and solves the
classical problem of Byzantine Generals in Distributed Computing.
[9] We will consider the ”generals” in the Byzantine General’s prob-
lem section as parties participating in the distributed network. The
messengers responsible for carrying messages to either attack or hold
position can be closely related to sending transactions back and forth
across the network.

As stated by Chris Hammerschmidt in [9] : ”The collective goal of
the ”loyal generals” is to decide whether or not to accept a piece of
information submitted to the network as valid or not.” A valid piece of
information would be, in our analogy, a correct opportunity to decide
in favor of attack.

A PBFT system can function on the condition that the maximum
number of adversary nodes must not be greater than or equal to one
third of all the nodes in the system. As the number of nodes increase,
the system becomes more secure[7]. Communication among nodes
has two functions: nodes must prove that message came from a spe-
cific node, and that they must verify that the message wasn’t modified
during transmission.

3.2.1 Working

The PBFT consensus algorithm is resilient for f Byzantine faults when
there are 3 f +1 total nodes [2]. The PBFT algorithm is a three-phase
protocol namely, - pre-prepare, prepare and commit. PBFT begins
when the client submits a request to the primary node. The primary
node starts the protocol immediately and is responsible for advocating
for the client request. Suppose, we have a total of 4 nodes, meaning
that we should be able to withstand 1 fault since 1

4 is less than 1
3 . So

let’s say one of our 4 nodes drops out due to a poor internet connection.
One node might have dropped out, but the other 3 nodes might not
know that yet, so they’ll keep sending messages to that node.

The next step is pre-prepare, in which the primary node sends out
”pre-prepare” messages to everyone in the network. A node accepts
the ”pre-prepare” message so long as it is valid. The message contains
signatures, and other useful metadata that lets nodes determine mes-
sage validity. If a node accepts a ”pre-prepare” message, it follows
up by sending out a prepare message to every other node in the net-
work. And prepare messages are accepted by receiving nodes as long
as they’re valid. A node is called prepared if it has seen the original
request from the primary node, has pre-prepared and has seen 2f pre-
pare messages that match its pre-prepare - making for 2 f +1 prepares.
After nodes are ”prepared”, they send out a commit message. If a node
receives f +1 valid commit messages, they carry out the client request
and finally, send a reply to the client. The client then waits for f + 1

Fig. 5. transaction submit rate of 9.24 tps and transaction commit rate
of 6.07 tps

of the same reply, this is because we allow for f faults, thus, we have
to wait for f +1 responses, as this ensures validity.

3.2.2 Analysis
The following analysis is done after configuring PBFT mechanism
in the Hyperledger Sawtooth blockchain. The experimental setup re-
mains the same as for RAFT and the configuration was made possible
by following the official Sawtooth setup guide [4]. We create and sub-
mit 10 batches of a transaction and the batch submission rate we get
is - 152.66 batch/sec. Referring to figure 5 if we continuously send
in batches with a workload of 10 batches per second, we get a trans-
action submit rate of 9.24 tps and for the transaction commit rate, we
can see it’s increasing but doesn’t increase steadily. So, the average
transaction commit rate of around 6.07 tps.

• The PBFT protocol can process high transaction throughput and
can scale incredibly across the network.

• The nature of PBFT means that transactions can be agreed upon
and finalized without needing multiple confirmations. There is
no waiting period to make sure a transaction is secure after in-
cluding it in a block. [23]

• The PBFT protocol can process high transaction throughput and
can scale incredibly across the network.

3.3 Algorand
Algorand is Byzantine agreement protocol which brings to the table
several technical advancements that are essential for Proof-of-Stake
blockchains. Before delving into the working of Algorand consensus
protocol, let us understand a few terminologies related to the protocol.

3.3.1 Terminology
• Verifiable Random Function (VRF) - The VRF is used to map

inputs to a pseudo-random output, with a proof that anyone can
use to verify the result. The VRF function is used to choose
leaders to propose a block and committee members to vote on a
block.

• Participation Key - A user node must be online to participate
in the consensus protocol. However, to reduce exposure, on-
line users do not use their spending keys (i.e., the key used to
sign transactions) for consensus. Instead, a user must generate
and register a specialized participation key before going online.
With this key, an online node can participate in proposing and
confirming blocks.[16]

Algorand is said to be a fast consensus protocol due to the use of
VRF which are used to perform secret cryptographic sortition to select
committees to run the consensus protocol [16] which means it could
really increase the number of transactions per second. One other im-
provement that Algorand has made as compared to its counterparts
is that it can withstand elongated network partitions and recover very
quickly from them, addressing a lot of real-world attacks.

As stated by Silvio Micali in [15]: ”Algorand is based on a new
Proof-of-Stake: Pure PoS. Essentially, a Pure PoS does not try to keep
users honest by the fear of imposing fines.” Rather, being dishonest by
a minority of the money is impossible, and by a majority of the money,
stupid.

SC@RUG 2020 proceedings

109

3.3.2 Working
Algorand uses Byzantine Fault Tolerance protocol called Byzantine
Agreement Protocol (BA) in [8] and Verifiable Random Functions
(VRF) for the committee election. When a block is proposed to the
blockchain, there is a committee of voters that is selected to vote for
the block proposal. If a super majority of the votes are from honest
participants, the block can be certified [8]. Committees are comprised
of pseudo-randomly selected nodes with voting power dependent on
their online stake. There are three steps to reach consensus, namely,
propose, soft vote and certify vote.

In the proposal phase, each node in the network loops through the
nodes it manages and for each node that is online, it runs the Algorand
Verifiable Random Function to determine the node to be selected to
propose the block. The VRF acts similar to a weighted lottery where
the stake of a node participating online affects the node’s chance of
being selected.

Next step is the Soft Vote phase, the purpose of this phase is to filter
down the number of proposals to one, which guarantees that only one
block is certified. Each node in the network will get proposal messages
from other nodes. Each node is responsible to validate the VRF proof
of these messages. In the next step the node will compare the hash
from each validated winner’s VRF proof to determine which is the
lowest and will only propagate the block proposal with the lowest VRF
hash. This process continues until the timeout is reached for this step.
The next step for all the nodes is to check whether the participating
nodes it manages is chosen to participate in the soft vote committee,
by running the VRF for all the participating nodes.

If a node is chosen, it will have a weighted vote based on the stake
the node has in the network, and these votes will be propagated to the
network. These votes will be for the lowest VRF block proposal cal-
culated at the timeout, thus, will be sent out to the other nodes along
with the VRF Proof [16]. A new committee is selected at each iter-
ation in the process and each step has a different committee size. A
quorum of votes is needed to move to the next step and must be a
certain percentage of the expected committee size [15].

The new committee checks the block proposal that won in the Soft
Vote stage, for overspending, double spending or any other problems.
If valid, the new committee votes again to certify the block [8]. This
is done in a similar manner as the Soft Vote. These votes are then
collected and validated by each node until a quorum is reached. This
is followed by the node creating a certificate for the block and write
it to the ledger. At this point a new round is initiated and the process
starts over. If a quorum is not reached in a committee vote until a
certain timeout, the network will enter recovery mode.

The Algorand protocol is robust against protocol level attacks such
as Denial of Service. As Georgios Vlachos stated in [20]: ”The Al-
gorand protocol is secure against an adversary who not only deviates
from the prescribed protocol rules, but can also launch arbitrary net-
work level attacks.” If the network stalls, the nodes move into recovery
mode. The nodes then keep sending recover messages to the network,
which during network partition are not propagated. These messages
are propagated once the network is up and running, and when a re-
quired threshold of messages is accumulated, the nodes are synchro-
nized and the system continues to move forward.

3.3.3 Analysis
• Algorand achieves probabilistic finality. As long as the adversary

owns less than 1
3 rd of the stake, Algorand can guarantee that the

probability for forks is negligible.

• Experimental results show that Algorand confirms transactions
in under a minute and incurs almost no penalty for scaling to
more users [8].

3.4 Ouroboros
The Ouroboros was developed by Kiayias et al.[11] in 2017 and it
has been used for a new cryptocurrency platform known as Cardano.
There are 2 famous generations of Ouroboros family: 1) Ouroboros 2)
Ouroboros Praos. As we mentioned in the section 2.4, The Ouroboros

Fig. 6. PVSS-based slot leader sequence generation in Ouroboros [22].

algorithm belongs to the committee-based PoS which operates a multi-
party computation (MPC) scheme to manage a committee to arranged
generate blocks.

3.4.1 Terminology

• Committee-based Proof of Stake: It defined as a chosen set of
participants a Committee consists of stakeholders with their de-
posits or stakes. The committee is safe for generating new blocks
in the blockchain. A reliable multiparty computation (MPC)
scheme is regularly applied to obtain such a committee in the
distributed network. The goal of MPC is creating methods for
parties to simultaneously compute a function over individual in-
puts with the same result as output [22].

• Publicly Verifiable Secret Sharing: In Ouroboros, The Publicly
Verifiable Secret Sharing (PVSS) used as the main cryptographic
scheme in randomly generation process. There are two schemes:
Secret and PVSS scheme. In secret scheme, a ”sharer” sends a
secret to many ”shares”. If a single party had access to more than
50% of shares, the original secret can be built. However, in the
PVSS scheme, the sharer publicly posts proof that the shares are
valid [22].

3.4.2 Working

Ouroboros distributes the actual time into fixed-time epochs and every
epoch is again divided into N slots. Only one slot leader can use each
of N slots to generate a new block for the network. In each epoch,
Electors can elect slot leaders for next epoch through PVSS process.
In the Figure 4, there are electors Ei which broadcast a commitment
message in the ”Commit Phase” involved a random secret. Then, there
is a ”Reveal Phase” in which Ei broadcasts an opening message that
illustrates the earlier sent secret. Next, there is a ”Recovery Phase”
in which all the electors verify that the opening match and the com-
mitments are match. In the end, all the electors can pas throughout
FTS and achieve the same slot leader sequence. As the figure shows,
Ouroboros’ one-slot-one-leader involves powerful network synchrony
and the PVSS-based leader selection may display the elected leaders
to targeted attacks[22].

Ouroboros Praos was introduced by David et al. in 2017 to address
two security concerns of Ouroboros[5]. It is a provably secure proof-
of-stake protocol that is the first to be secure against adaptive attackers
and scalable in a really practical sense. Also, it requires stringent net-
work synchrony for slot leaders to use their designated slots correctly,
which is vulnerable to desynchronization attacks[22].

In Ouroboros Praos, a Verifiable random function (VRF) used as a
core for randomly generation process. There are a private key and an
input and there are a pseudo-random number and proof as an output.
So with the public key and the proof and the given input, everyone
can verify the number was produced but cannot produce the number
before that time.

Consensus mechanisms to manage faults in Distributed Ledger Technologies – Sina Rouzbahani and Shivam Mutreja

110

Table 1. Comparing various consensus algorithms for various parameters [22].
Consensus Guarantees Finality Throughput(txns/sec) Robustness (BFT) Fault Tolerance

PBFT Yes Thousands Yes 33% nodes
Algorand Yes Hundreds Yes 33% token wealth

Raft Yes Hundreds No 50% nodes for Crash FT
Ouroboros and Praos Yes Hundreds Yes 50% token wealth

3.4.3 Analysis
In comparison, Ouroboros Praos manipulates a locally executed veri-
fiable random function (VRF) that makes the elector itself only knows
its block proposing for next epoch including VRF proofs verification.
The VRF scheme can save much of the communication cost at the local
cryptographic computation in comparison to PVSS-based leader elec-
tion. Some similar schemes are using contemporary protocols such as
Algorand. Also, Ouroboros Praos does not restrict the magnitude of
consensus participants and provides for a flexible committee.

If we want to mention the differences of Ouroboros and Ouroboros
Praos; In Ouroboros slot leaders are recognised publicly in advance
and there is always one slot leader per slot, while in Ouroboros Praos,
every stakeholder understands which slots they lead in advance, al-
though the others can know when a block is published. Either can be
various slot leaders for a slot or no slot leaders at all. Also, Praos has
an improved security guarantee.

4 COMPARISON OF ALGORITHMS

In this section we make a performance comparison between the con-
sensus algorithms mentioned throughout the paper. The evaluation
metrics that we’ll be using are the following :

• Throughput: measured as the number of transactions success-
fully committed per second.

• Fault Tolerance : Ability of a network to function even after a
few nodes of the network fail.

• Finality : It is the affirmation that all well-formed blocks will not
be revoked once committed to the distributed ledger.

The Table 1 provides a summary of comparison between consensus
algorithms.

5 CONCLUSION

Every distributed system has a few specific characteristics, such as,
concurrency, lack of global lock, fault tolerance and communication
between nodes. An algorithm achieves consensus if it satisfies agree-
ment. As we saw during this paper, a thorough review of distributed
ledger consensus protocols was provided. We analyzed these proto-
cols with respect to fault tolerance, performance and vulnerabilities.
We saw different algorithms have different advantages and varying
performance. As a user or developer of a distributed ledger system
one should look at one’s own requirement and compare different algo-
rithms before starting development. Regardless of how a distributed
ledger system is designed, if an adversary is powerful enough to main-
tain a network partition forever, no blocks will ever be produced. One
can just try to maximize the cost for the adversary to do such an act.

ACKNOWLEDGEMENTS

The authors wish to thank Vasileios Theodosiadis and Vasilios An-
drikopoulos for reviewing this paper.

REFERENCES

[1] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins, P. Mc-
Callum, and A. Peacock. Blockchain technology in the energy sector: A
systematic review of challenges and opportunities. Renewable and Sus-
tainable Energy Reviews, 100:143–174, 2019.

[2] M. Castro and B. Liskov. Practical byzantine fault tolerance. Mas-
sachusetts Institute of Technology, February 1999.

[3] M. J. M. Chowdhury, A. Colman, M. A. Kabir, J. Han, and P. Sarda.
Blockchain versus database: a critical analysis. In 2018 17th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing And
Communications/12th IEEE International Conference On Big Data Sci-
ence And Engineering (TrustCom/BigDataSE), pages 1348–1353. IEEE,
2018.

[4] I. Corporation. Configuring and deploying sawtooth raft.
https://sawtooth.hyperledger.org/docs/raft/nightly/master/, May 2015.

[5] B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 66–98. Springer, 2018.

[6] C. Dwork and M. Naor. Pricing via processing or combatting junk
mail. In Annual International Cryptology Conference, pages 139–147.
Springer, 1992.

[7] GeeksforGeeks. practical Byzantine Fault Tolerance(pBFT), July 2017.
[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand:

Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 51–68, 2017.

[9] C. Hammerschmidt. Consensus in blockchain systems. in short.
https://medium.com/@chrshmmmr/consensus-in-blockchain-systems-
in-short-691fc7d1fefe, January 2017.

[10] S. Kadam. Review of distributed ledgers: The technological advances be-
hind cryptocurrency. In International Conference Advances in Computer
Technology and Management (ICACTM), 2018.

[11] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In Annual International
Cryptology Conference, pages 357–388. Springer, 2017.

[12] G. Konstantopoulos. Understanding blockchain fundamentals, part 1:
Byzantine fault tolerance. 2017.

[13] L. Lamport. Paxos made simple, November 2001.
[14] R. S. Leslie Lamport and M. Pease. The byzantine generals problem. SRI

International, July 1982.
[15] S. Micali. Algorand’s core technology.

https://medium.com/algorand/algorands-core-technology-in-a-nutshell-
e2b824e03c77, April 2019.

[16] S. Micali. Protocol overview. Algorand Inc, December 2019.
[17] D. Ongaro and J. Ousterhout. In search of an understandable con-

sensus algorithm. In 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), pages 305–319, 2014.

[18] D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm. Stanford University, May 2014.

[19] M. Salimitari and M. Chatterjee. A survey on consensus protocols in
blockchain for iot networks. arXiv preprint arXiv:1809.05613, 2018.

[20] G. Vlachos. Algorand’s instant consensus protocol.
https://www.algorand.com/resources/blog/algorands-instant-consensus-
protocol, May 2018.

[21] T. von Köller. Raft explained - overview of the core protocol. 2017.
[22] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou. A survey of distributed consen-

sus protocols for blockchain networks. IEEE Communications Surveys &
Tutorials, 2020.

[23] W. L. Y. T. H. Yang Xiao, Ning Zhang. A survey of distributed consensus
protocols for blockchain networks. Washington University, January 2020.

SC@RUG 2020 proceedings

111

An updated literature review of service choreography adaptation

Wouter Hertsenberg, Jurgen Nijland

Abstract—Due to increasing demands in service oriented architectures in both classical software systems as well as with the Internet
of Things, there is an ever increasing demand for service orchestration and choreography. Especially choreography sees an increase
in demand since this removes the need for a central authority which can be regarded as a single point of failure. In this paper, we aim
to extend a previous literature review about service choreography from Leite et al. [5]. This paper was published in 2013, which leaves
us with another seven years of published papers that we want to analyse to see how the field of service choreography is progressing.
We categorise these papers according to which strategy they propose for utilising service orchestration. We have found 21 relevant
papers, which we divided into six categories. These categories include the following: model-based, measurement-based, multi-agent-
based, formal method-based, semantic reasoning-based and proxy layer-based. On top of that we also look at the research effort of
the 21 papers we found with respect to scalability and automaticity.

Index Terms—Service choreography, Choreography adaptation, Choreography customisation, Service composition, Systematic lit-
erature review, Extended literature review

1 INTRODUCTION

Due to increasing demands in interoperability between information
systems, modularity, scalability and flexibility have become impor-
tant requirements. To address these requirements the Service oriented
architectures (SOA) have become available. SOA is a programming
paradigm where business logic is divided into services which have
their own state. These services are aimed to be loosely coupled, mean-
ing they can be easily replaced or re-used by other services. SOA
requires a method to manage and coordinate the operation of all these
services.

Service orchestration refers to managing services from a single en-
tity. A depiction of service orchestration can be seen in Figure 1.
The central control agent within the system is called the orchestra-
tor. The main language used for describing orchestrations in XML is
the Web Services Business Process Execution Language (WS-BPEL)
[20]. Within this language Business Processes are described as actions
between Web Services.

Service A

Composite
Service

Service B

Service CService D

Reply

Invoke

Fig. 1. Service orchestration using a central control agent

On the other hand, Service Choreography is the collaboration be-
tween services in a decentralised matter. A depiction of this can be
seen in Figure 2. It refers to choreography in the sense of dancing,
where dancers move according to a global scenario without a central
point of control. Service Choreography is based on ordered message

• Wouter Hertsenberg
E-mail: w.hertsenberg@student.rug.nl.

• Jurgen Nijland
E-mail: j.nijland.2@student.rug.nl.

exchanges between services to accomplish a common business goal.
There exist multiple languages to express choreography models, how-
ever there exists no status quo language [5]. Choreography techniques
with distributed data exchange do under certain requirements have bet-
ter aggregated cost and response time compared to orchestration tech-
niques [10].

Service BService A

Service D Service C

Receive

Send

Fig. 2. Service choreography using decentralised data communication

Leite et al. published a systematic literature review of service chore-
ography adaptation in the period between 2005 and 2013 [5]. Due to
the rise of the Internet of Things and the increasing adoption of service
oriented architectures the demand for orchestration and choreography
strategies are increasing in demand. Next to this, service choreogra-
phy is still an active field of research, so we aim to provide an update
of this literature review using the same methods.

Our paper is structured as follows. In section 2 we discuss our
methods of finding and selecting the papers. In section 3 we perform
an investigatory analysis of the papers that we found and divide them
into choreography method categories. In section 4 we further analyse
the selected papers and give some background and insight in our de-
cisions. To summarise, in section 5 we conclude our findings and in
section 6 we discuss future work on this topic.

2 RESEARCH METHOD

In this section we describe the steps taken in our systematic litera-
ture review. First, the research question is presented and explained,
followed by the method we used to collect papers we could possibly
deem relevant and as last the steps we took to determine whether to
include a paper in our systematic review or to exclude the paper.

112

2.1 Research question

We want to see how the field of research has evolved in the last seven
years of publishing this paper. Therefore we formulate the following
research question: ”how has the research effort in the field of service
choreography evolved compared to the years 2005-2012 as published
in the paper written by Leite et al. [5]?” To see how the field has
evolved we compare the focus categories of each paper we deemed
relevant to the focus categories published by Leite et al.. These focus
categories can be found in Section 3.2. On top of that we also look
at the publication dates of the papers we deemed relevant and how
these papers publication dates are distributed over the years. Again
the distribution of the papers over the years will be compared to the
findings found by Leite et al.. We also look at the research focus areas
of the papers we found with respect to scalability and automaticity, but
these are less of a focus point for our systemic literature review.

2.2 Collecting possible relevant papers

In order to find relevant papers that are not biased, we need to make
sure to use the same keywords for every database or library we search.
The keywords we used were taken of the search query published by
Leite et al. [5] as can be seen in subsection 2.2. We took their search
query since it allowed us to stay close to their results and thus allowed
for a better comparison. In this query the papers’ abstracts and titles

("choreography" OR
"decentralized composition" OR
"decentralized service composition" OR
"distributed composition" OR
"distributed service composition" OR
"decentralized interacting services"

)
AND
(custom* OR adapt* OR reconfig* OR
self-config* OR auto-config* OR
"self-healing")

Fig. 3. Paper search query

are considered. The query consists of two query groups, one for
choreography and the other one is for self adaptation. We only want
to consider papers that contain both of these concepts, we join the two
query groups with an AND operator. The ’*’ in the query indicates a
wildcard, meaning that every word that contains the prefix before the
wildcard is included in our search result.

Libraries/databases used: We searched for relevant papers in
IEEE Xplore 1. We chose this library since IEEE Xplore is commonly
used by academics. This paper could be extended by including
additional sources such as ACM digital library, CiteSeerX, Google
scholar etc. To limit the scope of this project we only include results
from IEEE Xplore.

2.3 Determining relevance of a paper

We used the following approach to determine whether a paper was
relevant:

Step 1 Both authors read the paper.

Step 2 Both authors decided if the paper was relevant.

Step 3 If there was a disagreement over the relevance of a paper,
said paper was investigated further until an agreement was
reached.

1https://ieeexplore.ieee.org/Xplore/home.jsp

For example the query used as can be seen in subsection 2.2 re-
turned papers in Turkish or about tango dances. Therefore we decided
to only review the papers if they were written English. And the papers
about tango dances simply did not have anything to do with our topic:
service choreography.

2.4 Categorising a paper
The relevant papers also had to be categorised in the categories as
described in Section 3.2. This steps taken to categorise the papers
until both authors were in agreement are described below.

Step 1 The categories were defined.

Step 2 Both authors read the paper and decided on which categories
the paper belonged to according to the category definitions
that were determined in Step 1.

Step 3 If there was a disagreement over the categories a paper be-
longed to, said paper was researched further until both au-
thors reached an agreement.

3 CHARACTERISATION OF THE SELECTED STUDIES

In this section the characteristics of the papers will be presented. In
total 37 studies were found of which 21 were deemed relevant.

3.1 Distribution over time
In Table 1 one can see the results found with respect to the year. In Ta-
ble 1 one can also see the number of papers that were deemed relevant
for each year.

Table 1. Number of retrieved papers per year

Year Query results Accepted Accepted (%)
2013 9 7 78
2014 7 4 57
2015 2 1 50
2016 7 5 71
2017 5 2 40
2018 4 3 75
2019 3 0 0
2020 0 0 0

3.2 Paper categories
First, the different categories and their meanings will be explained.
These categories are the same as in the paper of Leite et al [5].
Next to the explanation of each category an example paper be-
longing to each category will be presented. The example papers
presented to each category have been chosen based on the ease of
explaining the contents of the paper. We have chosen to stick with
the same categories to keep consistency between our review and theirs.

Model-based: A category where a paper falls in if it uses a
model to support development. On top of that, the paper should talk
about high-level abstractions instead of implementation details, like
looking at the source code.
An example of a model-based paper is written by Wang et al. [19]. In
this paper the authors present a middleware that is chemistry-inspired.
This chemistry-inspired middleware models the decentralized service
coordination and adaptation as a series of pervasive chemical reac-
tions. This middleware can be executed on three different models:
orchestration model (model with a central orchestrator), semi-
choreography model (central orchestrator configures the services, so
they are ”virtually” connected), and the auto-choreography model (a
self-managed and self-adaptive cell composition cell is passed among
the services in the choreography).
Measurement-based: A category where the paper falls in if a major

SC@RUG 2020 proceedings

113

focus is put on putting thresholds on agents in service choreography
systems. These thresholds are used as indications and the agents try
to avoid crossing these thresholds. These thresholds often have to do
with QoS (quality of service) parameters.
An example of a measurement-based paper is written by Kothmayr
et al.[9]. This paper shows a model that can be reconfigured nearly
instantly with a user-interface. The authors first present an abstract
description of this approach after which they demonstrate a real-world
example. The resulting choreographies that this method offer are both
deterministic and have verifiable real-time properties.
Multi-agent-based: If the focus of the paper is on separate agents and
how they interact with each other in a service choreography. These
agents are mostly autonomous and only communicate with other
agents if necessary. On top of that these autonomous agents can learn
and analyze to change their actions accordingly to the environment.
The paper written by Herry et al. [7] is an example of a multi-
agent-based approach. The authors present a technique that allows
users to autonomously reconfigure a computing infrastructure by
automatically generating a set of reactive agents.
Formal method-based: These papers talk about applying process
calculus or finite state automata to model current systems. These
techniques, i.e. process calculus and finite state automata, are used
to check the correctness of a system and also to see if the modelled
system is actually realizable.
The paper written by Moschoyiannis et al. [11] present a trace-based
model to choreography specification. By using this approach one can
verify whether the local behaviour of the particpants adheres to the
global protocol prescribed by the choreography.
Semantic reasoning-based: Papers in this category reason about
the communication between services by using ontologies. On top of
that they also reason about the replaceability of a service in a service
choreography. In other words, the service tries to understand the data
sent by other services by looking at the semantics. The semantics
are better understood by using the relevant topology of the service’s
domain.
The paper written by Weiß [23] is an example of a semantic
reasoning-based approach. Weiß et al. present a life cycle that
enables the trial-and-error modeling and execution of multi-scale
and/or multi-field simulations. This life cycle is also geared towards
extending standard-based technologies from business applications in
a generic and domain-independent way.
Proxy layer-based: The papers in this category are related to
services that focus on sending and intercepting messages in a service
choreography. The services in this category use a proxy to make the
necessary adaptions to intercepted messages.
The paper written by Salle et al. [15] is an example of a proxy
layer-based research. The paper talks about how challenging it is to
achieve full automation of protocol coordination and adaptation when
composing services that are heterogeneous. The authors conclude
that they plan to keep on studying on how to achieve choreography
adaptation and evolution through complex data mappings.

Table 2. Categories of the selected papers

Category Papers Total

Model-based
[8] [2] [23] [1]
[18] [21] [19] [22]
[14]

9

Measurement-based [9] [18] [6] [24] [12] 5
Multi-agent-based [8] [13] [17] [7] [12] 5

Formal method-based [2] [11] [3] 3
Semantic reasoning-based [23] 1

Proxy layer-based [15] 1

3.3 Scalability & Automaticity

We wanted to further analyse what contributions the selected papers
have made to especially automaticity and scalability. The results of
our research can be seen in Table 3.
The automaticity meaning whether the paper has a major focus re-
lated to the research of automating the system. And with scalability
meaning whether the paper focuses a lot on the research related to
the scalability of the system. We will briefly discuss what the papers
that deal with the automaticity and scalability have found about this
requirements with respect to service choreography.

Table 3. Automaticity and scalability distribution of the papers

Category Papers Total

Automaticity
[17] [18] [15] [6]
[3] [1] [12] [2]
[19] [24]

10

Scalability [6] 1

3.3.1 Scalability

There is only one paper that mentions scalability and means to in-
crease it in their system. The relevant paper concerning scalability
is written by Furtado et al. [6]. They state that manual deployment
of new instances is not efficient and does not scale. They propose a
choreography enactment engine, which can deploy and execute a given
composition. It also dynamically reconfigures and provides automatic
resource provisioning based on Service Level Agreement constraints.
This largely removes the need for human intervention.

Especially in their section about the monitoring for system load,
they state the following: ”The monitoring probe can also apply prede-
fined filters to the generated event feed. Not only can a filter reduce
the number of events reported to the RMA but it can also aggregate
events. The frequency at which events are created can be significantly
high and, for this reason, filters are essential to achieve good perfor-
mance and scalability in our architecture”. They are taking measures
not only to add the scalability by allowing new resources to be al-
located to the system, but they are also making sure their automatic
monitoring system can scale accordingly as well. If the monitoring
service is unable to handle the load, there is no way to automatically
know when new resources need to be allocated or new instances need
to be launched.

Other papers also mention scalability, however they do not go into
detail what part of the scalability issue they actually try to solve. That
service choreography methods mention scalability is trivial since the
point of choreography is to manage a service composition, which
main advantage is scalability. To name a few, one of these papers is
Moustafa et al. [12]. Tbis paper mentions a new theoretical model to
handle decentralised service interactions even in highly dynamic en-
vironments. They test their model in a large-scale environment and
achieve polynomial results where previous methods would expect an
exponential trend. In more papers we see scalability mentioned as an
important attribute [7], [24], [11], however, in no paper we analysed it
is the main criterion of the model.

3.3.2 Automaticity

A lot of these papers have at least some mention or influence on the
automaticity of web compositions. There are however a few papers
that directly work or extend on methods to reduce human intervention.
One of the papers that do talk about automaticity is from Vargas-
Santiago et al. [18]. The paper they wrote extends IBM’s Auto-
nomic Computing initiative [16] with fuzzy logic and ranking to cer-
tain attributes of web services to increase its self-monitoring capabil-
ities. IBM’s autonomic computing program aims to implement self-
configuring, self-healing, self-monitoring and self-optimizing for ser-
vice compositions.

An updated literature review of service choreography adaptation – Wouter Hertsenberg and Jurgen Nijland

114

Another example is also in the subfield of monitoring by introduc-
ing self-adaptive monitors [3]. Instead of applying fuzzy logic, this
paper tends more towards correctness of configuration changes. This
paper is more on the theoretical side and does not go into the imple-
mentation. This is also directly visible from Table 2 where it is cate-
gorized under formal methods.

And another example is the paper we already mentioned before by
Moustafa et al. [12]. Even though they only tested the scalability
capabilities of their model, it is built around switching service compo-
sitions by detecting Quality of Service degradations of certain services
and reconfiguring the system.

4 DISCUSSION

In this section, we will attempt to answer the research question formu-
lated in Section 2.1: ”how has the research effort in the field of service
choreography evolved compared to the years 2005-2012 as published
in the paper written by Leite et al. [5]?”
To give an answer we will first look at the distribution of our se-
lected papers and we will attempt to explain the possible differences
we found when comparing to the paper written by Leite et al. After
which we will look at the differences in categories compared to the
findings published by Leite et al.. We will again to attempt to give an
answer to the differences found.
The distribution of the selected papers over the years and the distribu-
tion of the papers over the different categories can be found in Table 4
and Table 5 respectively.

Table 4. Distribution of selected papers compared to the year

Year published Quantity (%) Year published Quantity (%)
(Leite et al.) (our findings)

2005 5 21 2013 7 33
2006 2 8 2014 3 14
2007 4 17 2015 1 5
2008 3 12 2016 5 24
2009 3 12 2017 2 10
2010 4 17 2018 3 14
2011 2 8 2019 0 0
2012 1 4 2020 0 0
Total 24 100 Total 21 100

Table 5. Difference of selected papers with respect to category

Category 2005-2012 (%) 2013-2020 (%)
(Leite et al.)

Model-based 8 33 8 35
Measurement-based 4 17 5 22
Multi-agent-based 4 17 5 22

Formal method-based 4 17 3 13
Semantic reasoning-based 2 8 1 4

Proxy layer-based 2 8 1 4
Total 24 100 23 100

Our papers are less evenly spread out over the years compared to
the papers found by Leite et al. as can be seen in Table 4. On top
of that, we also have 2 years without any relevant papers, namely the
years 2019 and 2020. We are however only 2 months in 2020 which
probably explains the lack of relevant papers in 2020. The fact that
there are more papers published with respect to service choreography
in the years 2013 to 2016 compared to 2017 to 2020 might indicate
that the research in service choreography is slowing down. However,
the sample size, which is only 21 publications big, is probably not big
enough to say with certainty.
As one can see in Table 5 our findings do not seem to differ too much
from the findings published by Leite et al.. There are some minor

differences like, e.g. a slightly higher percentage of findings in the
model-based category or a lower amount of findings in the proxy layer-
based category, but in general they appear to have the same distribution
over the categories. These differences in findings can probably be at-
tributed to simply not having a big enough sample size. Namely only
24 findings in Leite et al. compared to our 21 findings. Since the find-
ings in Table 5 are looking similar to the findings found by Leite et
al. one might conclude that the research focus with respect to the cat-
egories in service choreography has not changed much in the period
2013 to 2020 compared to the research done on service choreography
in the period 2005-2012.
If one were to look at the scalability differences and compare those to
Leite et al. one would find that Leite et al. found 2 papers with respect
to scalability and we only found 1 paper. So again similar looking re-
sults.
The way we categorized automaticity cannot be compared to Leite et
al. since we used a different meaning for automaticity.

5 CONCLUSION

In this paper, we have presented our paper selection strategy. This pa-
per selection strategy was heavily influenced by the paper written by
Leite et al. [5]. We have also presented the results we found. In the
discussion, we compared these results with the comparison paper writ-
ten by Leite et al.. So it was only natural for us to take the categories
as defined by Leite et al. as our reference categories. We found that,
as it currently appears, the service choreography field is still being re-
searched actively and the research focus did not seem to have changed
significantly compared to the reference paper.
But it is probably too early to draw a definitive conclusion. This is the
case since our paper was written by only 2 people, which meant we
only had limited time available to perform research. This caused us to
limit our search libraries/database to only one library, IEEE Xplore, in
our research. Which in turn caused us not to be able to evaluate only
37 papers. And in order to get a better insight into the service chore-
ography field, more research needs to be done, thus more papers need
to be analyzed and more in-depth research of every paper needs to be
done.

6 FUTURE WORK

Our literature review is a simple extension on the paper of Leite et al
[5]. We have omitted several sources of papers such as CiteSeerX,
ACM digital library and more which were included in Leite et al. This
paper could be extended by analyzing these paper sources as well.

Next to this, we could also have more thoroughly analysed the new
papers and even derive new categories if we deemed them to be neces-
sary. For example, we encountered a few block-chain based technolo-
gies proposed for service orchestration. Even though bitcoin, which
was one of the main implementations that sparked the public interest
in block-chain, was developed in 2008, blockchain only gained popu-
larity a few years after the release [4]. This means that this technology
was certainly not a category yet in the previous literature review.
Another point of improvement would be to use more search li-
braries/databases as Leit et al. did. However doing such a thorough
review, as Leite et al. did for more than 400 papers, is not feasible in
the time span of writing this paper, especially since we are only with
two authors and Leite et al. had a whole team. Having either a larger
amount of time, more authors or both could increase the number of
paper sources to include in this literature review.
It would also be interesting to see how this field will develop in the
next decade. In the future this literature review can be done once again
for papers ranging from 2020 to some year in the future. As we have
shown the area is still in active research and there is no indication of a
decrease in the amount of paper publications in this subject area.

ACKNOWLEDGEMENTS

This paper was written for the Student Colloquium 2020 organised by
the Department of Computing Science of the University of Gronin-
gen.

SC@RUG 2020 proceedings

115

REFERENCES

[1] V. Andrikopoulos, S. G. Sáez, D. Karastoyanova, and A. Weiß. Towards
collaborative, dynamic and complex systems (short paper). In 2013 IEEE
6th International Conference on Service-Oriented Computing and Appli-
cations, pages 241–245, Dec 2013.

[2] S. Cherrier, Y. M. Ghamri-Doudane, S. Lohier, and G. Roussel. Salt:
A simple application logic description using transducers for internet of
things. In 2013 IEEE International Conference on Communications
(ICC), pages 3006–3011, June 2013.

[3] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Self-adaptive moni-
tors for multiparty sessions. In 2014 22nd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing, pages
688–696, Feb 2014.

[4] C. Decker and R. Wattenhofer. Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10, Sep. 2013.

[5] L. Ferreira Leite, G. Oliva, G. Nogueira, M. A. Gerosa, F. Kon, and
D. Milojicic. A systematic literature review of service choreography
adaptation. Service Oriented Computing and Applications, pages 1–18,
September 2012.

[6] T. Furtado, E. Francesquini, N. Lago, and F. Kon. Towards an enactment
engine for dynamically reconfigurable and scalable choreographies. In
2014 IEEE World Congress on Services, pages 325–332, June 2014.

[7] H. Herry, P. Anderson, and M. Rovatsos. Choreographing configuration
changes. In Proceedings of the 9th International Conference on Network
and Service Management (CNSM 2013), pages 156–160, Oct 2013.

[8] A. Kattepur, N. Georgantas, and V. Issarny. Qos composition and anal-
ysis in reconfigurable web services choreographies. In 2013 IEEE 20th
International Conference on Web Services, pages 235–242, June 2013.

[9] T. Kothmayr, A. Kemper, A. Scholz, and J. Heuer. Instant service chore-
ographies for reconfigurable manufacturing systems - a demonstrator. In
2016 IEEE 21st International Conference on Emerging Technologies and
Factory Automation (ETFA), pages 1–8, Sep. 2016.

[10] D. Liu, K. H. Law, and G. Wiederhold. Analysis of integration models for
service composition. In Proceedings of the 3rd International Workshop
on Software and Performance, WOSP ’02, page 158–165, New York, NY,
USA, 2002. Association for Computing Machinery.

[11] S. Moschoyiannis, L. Maglaras, and N. A. Manaf. Trace-based verifi-
cation of rule-based service choreographies. In 2018 IEEE 11th Con-
ference on Service-Oriented Computing and Applications (SOCA), pages
185–193, Nov 2018.

[12] A. Moustafa, M. Zhang, and Q. Bai. Trustworthy stigmergic service com-
positionand adaptation in decentralized environments. IEEE Transactions
on Services Computing, 9(2):317–329, March 2016.

[13] H. N. Nguyen, P. Poizat, and F. Zaı̈di. Automatic skeleton generation
for data-aware service choreographies. In 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE), pages 320–329,
Nov 2013.

[14] S. Parsa, A. Ebrahimifard, M. J. Amiri, and M. K. Arani. Towards a goal-
driven method for web service choreography validation. In 2016 Second
International Conference on Web Research (ICWR), pages 66–71, April
2016.

[15] A. D. Salle, P. Inverardi, and A. Perucci. Towards adaptable and evolving
service choreography in the future internet. In 2014 IEEE World Congress
on Services, pages 333–337, June 2014.

[16] D. Sinreich. An architectural blueprint for autonomic computing (ibm
white paper). 2006.

[17] C. Stary, A. Fleischmann, and W. Schmidt. Subject-oriented fog comput-
ing: Enabling stakeholder participation in development. In 2018 IEEE
4th World Forum on Internet of Things (WF-IoT), pages 7–12, Feb 2018.

[18] M. Vargas-Santiago, L. Morales-Rosales, S. E. Pomares-Hernandez,
H. Khlif, and H. Hadj-Kacem. Towards dependable web services in col-
laborative environments based on fuzzy non-functional dependencies. In
2017 5th International Conference in Software Engineering Research and
Innovation (CONISOFT), pages 121–129, Oct 2017.

[19] C. Wang and J. Pazat. A chemistry-inspired middleware for self-adaptive
service orchestration and choreography. In 2013 13th IEEE/ACM Inter-
national Symposium on Cluster, Cloud, and Grid Computing, pages 426–
433, May 2013.

[20] Wei Tan, Yushun Fan, and MengChu Zhou. A petri net-based method for
compatibility analysis and composition of web services in business pro-
cess execution language. In IEEE Transactions on Automation Science
and Engineering, volume 6, pages 94–106, Jan 2009.

[21] A. Weiss, V. Andrikopoulos, M. Hahn, and D. Karastoyanova. Model-
as-you-go for choreographies: Rewinding and repeating scientific chore-
ographies. IEEE Transactions on Services Computing, pages 1–1, 2017.

[22] A. Weiß, V. Andrikopoulos, M. Hahn, and D. Karastoyanova. Enabling
the extraction and insertion of reusable choreography fragments. In 2015
IEEE International Conference on Web Services, pages 686–694, June
2015.

[23] A. Weiß and D. Karastoyanova. A life cycle for coupled multi-scale,
multi-field experiments realized through choreographies. In 2014 IEEE
18th International Enterprise Distributed Object Computing Conference,
pages 234–241, Sep. 2014.

[24] L. Zhang, M. Ma, G. Zhang, and A. S. Lim. Distributed composition ser-
vices for self-adaptation wireless sensor networks. In 2013 Computing,
Communications and IT Applications Conference (ComComAp), pages
47–52, April 2013.

An updated literature review of service choreography adaptation – Wouter Hertsenberg and Jurgen Nijland

116

Parallel Computation of Connected Component Trees in Giga
and Tera-Scale Images

Kevin Gevers and Pieter Jan Eilers
Abstract—Component trees are region-based, hierarchical representations of connected components of an image. A
max-tree is a type of component tree that can be used for efficient attribute filtering and labeling. For tera-scale images,
the sequential computation is extremely time consuming. To compute these image representations in reasonable time,
there is a need to parallelize the construction of a max-tree. Recently, different algorithms have been proposed to
construct and filter component trees using parallel methods on distributed and shared-memory machines. In this paper,
we analyze several concurrent implementations and compare their advantages, disadvantages, and performance. We
discuss three state-of-the-art algorithms, a shared-memory algorithm using a pilot-tree, a distributed algorithm using a
distributed component forest and boundary trees, and a hybrid-memory algorithm using tuples. It becomes clear that the
hybrid-memory algorithm is the fastest for tera-scale images, but is not able to handle images with a high bit depth. The
pilot-tree algorithm is not as fast on tera-scale images with a low bit depth but can handle very high bit depth much faster
than the other algorithms.

Index Terms—Connected filters, component-trees, max-tree, parallel computing, Mathematical morphology.

1 INTRODUCTION

Connected components are typically sets of 4 or 8-connected
pixels in 2-D images of maximal extent with the same intensity
value. Connected component labeling is used to label each of
these sets of an image. This can, for instance, be used for com-
puter vision applications to help detect certain objects. When fil-
tering an image, components with a certain attribute value lower
than a given threshold can be removed or preserved. Area filter-
ing, for example, can be used to remove regions of an image
with an area smaller than a certain value. In order to label each
connected component, we can use a structure called a compo-
nent tree of max-tree, representing the connected components
at every threshold or gray-level of an image. The leaf nodes of
a max-tree represent the local image maxima and the root node
of the max-tree represents the image minimum or background.
Traversing the max-tree gives the inclusion relation of the con-
nected components, and thus can be used for labeling. While
this works in reasonable time with a sequential algorithm for
smaller images, it becomes too slow for larger images. In as-
tronomy, for example, there is a need to detect structures, like
galaxies, on very large surveys. In order to parallelize the algo-
rithm, the image needs to be split up into tiles, so a max-tree can
be computed for each tile separately. The difficult and costly
part is merging the tiles or local max-trees back together, es-
pecially for images of high or extreme dynamic range (XDR).
Many current applications in the field of imagery rely on high-
dynamic range or floating point imagery, due to increasing sen-
sitivity of equipment and other technological improvements. In
2008, Wilkinson et al. [15] first introduced an efficient parallel
computation of components trees which paved the way for the
current state-of-the-art in this sub-domain of image processing.
Up until recently, there were no parallel algorithms suitable for
building max-trees of an image with a bit depth of more than
8 bits per pixel (bits per pixel). New algorithms have recently
been developed to solve this problem.

A distributed component forest or DCF is a memory-efficient

• Kevin Gevers is with the University of Groningen, E-mail:
k.v.f.gevers@student.rug.nl.

• Pieter Jan Eilers is with the University of Groningen, E-mail:
p.j.eilers@student.rug.nl.

and fast way of building a max-tree where the entire max-tree
does not have to be computed, but it can be represented by a
forest of smaller trees. This is especially useful in the case of
distributed memory, where every node has to store only the lo-
cal max-trees of its threads. The boundary-tree approach uses
such a DCF on distributed memory. The halo-approach also
computes local max-trees on separate nodes but uses tuples to
communicate and correct for adjoining tiles. The local max-
trees are computed using shared memory, communicating and
resolving the tuples between threads is done using distributed
memory, making it a hybrid-memory algorithm. We also look
into a shared-memory solution using a pilot max-tree, optimized
for XDR images. The pilot max-tree is, in this case, a max-tree
of the quantized image where the intensities are mapped to a re-
duced range. This tree is constructed first and later refined to the
final max-tree in a refinement stage.

In Section 2, we provide a brief introduction to two sequential
max-tree algorithms and their implementations. The subsequent
Section 3 presents an overview of the proposed state-of-the-art
parallel max-tree algorithms. In Section 4, we will compare the
different techniques that have been proposed and outline their
advantages and disadvantages in terms of memory efficiency,
speed-up and ability to deal with XDR images. Section 5 con-
cludes the paper, discussing the best methods to use in different
situations and describing possible future work.

2 RELATED WORK

We will first discuss the sequential algorithms for generating
max-trees. In the sequential case, the algorithms for building the
hierarchical representations of the connected components are
well established. The most important ones are leaf-to-root and
root-to-leaf algorithms. For root-to-leaf, flooding algorithms are
most common, the one introduced by Salembier et al. in 1998
[11] is the most commonly used. For leaf-to-root, the Union-
Find algorithm, introduced by Tarjan [14] in 1975 is most com-
mon. Both algorithms can be used to generate a max-tree in
order to create the hierarchical representation of the connected
components in the image.

2.1 Two Sequential Max-Tree Algorithms
Given a greyscale image f , a peak component Pi

h at level h is the
set of all pixels of a connected component of the thresholded
image Th(f), where Th(f) = {p | f (p) ≥ h}. Because there
can be many connected components at level h, each component

117

is indexed by i. Connected components can be organized in a
max-tree structure where each peak component Pi

h corresponds
to a node Ci

h[9]. Max-tree building algorithms can be divided
into two categories. The first one being root-to-leaf flooding
[11], which starts from the root node, i.e. the pixel with the
lowest intensity, and traverses the connected components in a
depth-first approach. The leaf-to-root merging category starts
from the pixels with the highest intensity, the image maxima,
and they work on the sorted pixels that are merged into nodes of
a tree, based on Tarjan’s union-find algorithm[14] proposed in
1975. Every node of the tree can be seen as a peak component.
In the following sections, we describe these two main sequential
max-tree algorithms which form a basis for the parallel methods
described in Section 3.

2.1.1 Flooding
One way to efficiently label all the connected components is
by using the tree-based flooding algorithm, originally created
by Salambier et al. [11]. This algorithm creates a max-tree,
in a root-to-leaf fashion. This means it starts at the pixel with
the lowest intensity and performs a depth-first traversal of the
connected components at higher intensities. This is done re-
cursively using a hierarchical ”first-in, first-out” (FIFO) queue.
For each peak component, a node in the max-tree is created. A
node contains four fields: Level the original level of intensity,
NewLevel the new value after filtering, Attribute the value used
for filtering, and Parent which points to the parent node. Im-
portant to note is that a connected component can be connected
at the horizontal and vertical edges (4-connected components)
or connected at the horizontal, vertical and diagonal edges (8-
connected components) for 2-D images. 3-D images can be ei-
ther 6-connected or 26-connected [13]. Salembier’s algorithm
was later rewritten in a non-recursive implementation by Car-
linet et al. [2]. The pseudocode of which is shown in Algorithm
1. A detailed explanation of this algorithm is shown in the paper
by Götz et al. [7].

2.1.2 Union-Find
The union-find algorithm, first introduced by Tarjan [14], was
designed to keep track of disjoint sets. Connected components
of an image do not overlap, meaning that this algorithm can be
adapted to keep track of these components in the image domain.
Each set can be represented by a tree, the root of the tree is an ar-
bitrary element of that set. Each root points to itself and all other
elements point to the root. To determine if two elements belong
to the same set of components, it is logical to check if they have
the same root. The quasi-linear approach introduced in [14] uses
three important operations. MakeSet(a) which makes a into a
singleton, meaning the set containing only a. FindRoot(a), re-
turning the root of the tree containing a and Union(a, b), merg-
ing the two sets containing a and b. The union-find approach
was adapted for max-trees in [10]. With this adaptation, the root
of a set of points now points to a connected component of lower
intensity. Only these nodes which have a parent node at lower
intensity are necessary to represent the entire tree and hold the
correct attribute values. These nodes are known as canonical
elements or level roots. The sequential Berger algorithm [1],
shown in Algorithm 2, uses Tarjan’s method to build the max-
tree.

3 CONCURRENT METHODS

Parallel computation can use either a shared memory, distributed
memory, or a combination of both. In shared-memory algo-
rithms, each process has access to the same memory concur-

Algorithm 1 The non-recursive version of Salembier’s flooding
algorithm as presented by Carlinet et al. [3]

1: procedure PROCESS-STACK(r,q)
2: λ ← f (q)
3: POP(levroot)
4: while levroot not empty and λ < f (TOP(levroot) do
5: INSERT FRONT(S, r)
6: r← parent(r)← POP(levroot)
7: if levroot empty or f (TOP(levroot)) 6= λ then
8: PUSH(levroot, q)
9: B Particular case for the last element:

10: parent(r)← TOP(levroot)
11: INSERT FRONT(S,r)
12: function MAX-TREE(f)
13: B INITIALIZATION:
14: for all p do parent(p)←−1
15: start pixel← ANY POINT IN Ω
16: PUSH(pqueue, start pixel)
17: PUSH(levroot, start pixel)
18: parent(start pixel)← INQUEUE
19: B FLOODING:
20: LOOP
21: FLOOD
22: p← TOP(pqueue); r← TOP(levroot)
23: for all n ∈N SUCH THAT parent(p) =−1 do
24: PUSH(pqueue,n)
25: parent(n)← INQUEUE
26: if f (p)< f (n) then
27: PUSH(levroot,n)
28: GOTO FLOOD
29: POP(pqueue)
30: parent(p)← r
31: if p 6= r then INSERT FRONTS(S,p)
32: B ROOT FIXING:
33: while pqueue not empty do
34: B ALL POINTS AT CURRENT LEVEL DONE?
35: q← TOP(pqueue)
36: B ATTACH R TO ITS PARENT
37: if f (q) 6= f (r) then PROCESS-STACK(()r,q)
38: B PARTICULAR CASE FOR THE LAST ELEMENT, TREE ROOT:
39: root← POP(levroot)
40: INSERT FRONTS(S,root)

rently, while for distributed memory algorithms, each process
has its own memory and has to communicate with the other pro-
cesses using a messaging system like the Message Passing Inter-
face [6]. In order to parallelize the connected component label-
ing, the images are split up and divided over a certain amount of
processors. Each processor will execute one of the algorithms,
resulting in a max-tree for each tile of the image. To get the con-
nected components correctly labeled in the full image, the max-
trees have to be joined together. We will discuss three different
techniques to do join these max-trees back together. Firstly, we
will discuss a technique that first creates a pilot max-tree of a
quantized image, following is the refinement stage, where the
pilot max-tree is used to build the final ”refined” max-tree. The
second technique uses the edges of each tile to create boundary-
trees which can be communicated to compute the correct local
max-tree of each tile. The last approach uses so-called ”Halos”,
where each tile of the image has a 1-pixel wide strip at each
edge, which overlaps with the tile bordering it. This redundant

Parallel Computation of Connected Component Trees in Giga and Tera-Scale . . . – Kevin Gevers and Pieter Jan Eilers

118

(a) (b) (c)

Fig. 1: (a) Original gray-scale image. (b) The peak components of each threshold set. (c) The resulting max-tree. Originals from
[5]

Algorithm 2 Pseudocode of the sequential Berger algorithm as
presented by [9] which uses Tarjan’s Union Find.

1: procedure RUN BERGER(Image f)
2: S← SORTPIXELSDECREASING(f);
3: for all pixel p ∈ S do
4: node[p].parent← p;
5: zpar[p]← p;
6: for all pixel q neighbours of p with zpar[q] 6=−1 do
7: r← FINDROOT(q);
8: if r 6= p then
9: zpar[r]← p;

10: node[r].parent← p;
11: node[p].Area← node[p].Area+node[r].Area;
12: procedure FINDROOT(Pixel p)
13: if zpar[p] 6= then
14: zpar[p]← FINDROOT(zpar[p])
15: return zpar[p]
16: procedure INIT(Image f)
17: for all pixel p ∈ f do
18: zpar[p]←−1
19: node[p].parent←−1
20: node[p].Area←−1
21: RUNBERGER(f)

halo is helpful to merge the information in the different individ-
ual trees, in the specific case where we use distributed memory
machines.

3.1 Shared-Memory Hybrid Algorithm
Parallelization of state-of-the-art sequential algorithms used for
max-tree construction, like the one described in Salembier et
al.[11], becomes problematic when dealing with images with
extreme dynamic range. Because the complexity of merging
sub-trees is proportional to the number of bits per pixel, the
cost of merging sub-trees increases as the bits per pixel increase.
Consequently, the performance of parallel algorithms decreases
drastically if 32-bit integer or floating point representations are
used for the input image. To efficiently deal with XDR images,
a different approach is proposed in [9] to implement the merg-
ing of sub-trees in a two-step parallel algorithm. In the first
phase of the parallel hybrid algorithm, a quantized version f̄ of
the input image f is computed. In this quantized image, the
number of bits per pixel is reduced to the number of threads
used in the parallel program. This allows for a so-called pilot

max-tree to be built using any existing parallel method, like the
one shown in Algorithm 3. Every thread builds its local max-
tree using root-to-leaf flooding. These local max-trees are then
merged using the CONNECT procedure as shown in Algorithm
4. The complexity of this CONNECT operation grows exponen-
tially with bit depth, which is the reason a pilot max-tree of the
quantized image is computed first. The pilot max-tree can then
be ”refined” into the complete max-tree. This entire process is
described as a hybrid algorithm since it uses root-to-leaf flood-
ing in the first stage and leaf-to-root merging in the refinement
stage.

3.1.1 The Pilot Max-Tree
The pilot max-tree is simply the max-tree of the quantized im-
age f̄ . It is important to note that the max-tree of the quan-
tized image does not show any new peak components that were
not present in the original image. In Figure 2a, we see a signal
representing a 16-bit 1D image, after quantization, the original
image is mapped to 4 intensities, any peak component in the
original image is flattened to its nearest lower intensity value in
the quantized image. This fact is exploited and a relation is en-
forced where the level root nodes of the pilot tree are a subset
of the level root nodes of the refined tree. A stricter definition of
a level root has to be made to ensure this correspondence. The
level root is no longer an arbitrary pixel, instead, it is chosen
to be the pixel with the lowest coordinate among the pixels be-
long to the same component. The original flooding algorithm
is adapted slightly in [9] to keep the level root with the lowest
coordinate in each component.

3.1.2 The Refinement Stage
The next step is the refinement stage, where the pilot max-tree is
”refined” until the final max-tree is computed. The pilot max-
tree is not modified, so all threads can safely access it. The
image is partitioned according to its intensities. Each thread of
the refinement stage uses the sequential Berger algorithm on the
pixels of its partition. The Berger algorithm uses a sorted ar-
ray of pixel intensities and processes them from high to low. A
parallel version of Radix sort is used to sort the pixel coordi-
nates in the original image based on their intensities, from low
to high[4]. The final tree is created in parallel using K threads,
working on the original pixel values of f . Each thread receives a
partition Si of the sorted pixels corresponding to the same quan-
tized intensity and processes them in descending order. A par-
allel stable radix sort is used, meaning the pixels with equal in-
tensity retain their original order, i.e. from lowest to highest
coordinate. This ensures the last processed pixel of every con-

SC@RUG 2020 proceedings

119

Algorithm 3 Concurrent Construction of the Max-Tree for
thread th on K threads [9].

1: procedure PARELLEL HIERACHICAL QALGO-
RITHM(Thread th, Image partition P)

2: m← argmin(P)
3: Add m to the Queue at level P(m)
4: isVisited[m]← true
5: levelroot[P(m)]← m
6: FLOOD(P(m), P, 0)
7: i← 1;q← th
8: while (th+ i < K)∧ (q%2 = 0) do
9: Wait to glue with right-hand neighbour

10: for all Edges(u,v) b/w partition Pth abd Pth+i do
11: CONNECT(th, i,(u,v))
12: i← 2∗ i;q← q/2
13: if th 6= 0 then
14: Notify left-hand neighbour
15: Wait for Thread 0

nected component in the original image f , will be the one with
the lowest image coordinate. This fact ensures that the level
roots of the pilot max-tree are a subset of the level roots of the
refined tree.

Algorithm 4 Code of the CONNECT Procedure. Symbol ⊥ is
defined as the root node of every sub-tree and f (⊥) =−∞ [9]

1: procedure CONNECT(Thread th, Edge(u,v))
2: area← 0;areatemp← 0
3: x← GETLEVELROOTOF(u)
4: y← GETLEVELROOTOF(v)
5: if f (x)< f (y) then
6: Swap(x,y)
7: while x 6= y∧ x 6=⊥ do
8: z← GETLEVELROOTOF(node[x].parent)
9: if f (z)≥ f (y)∧ z 6=⊥ then

10: node[x].Area← node[x].Area+area
11: x← z
12: else
13: areatemp← node[x].Area+area
14: area← node[x].Area
15: node[x].Area← areatemp
16: node[x].parent← y;x← y;y← z
17: if y =⊥ then
18: while x 6=⊥ do
19: node[x].Area← node[x].Area+area
20: x← GETLEVELROOTOFNODE(node[x].parent)

3.2 Distributed Boundary Max-Tree Algorithm
For the boundary tree approach [5] the image is again cut up into
as many tiles as there are processors available. Each processor
computes the max-tree for the tile of the image it received. In or-
der to merge the tiles back together a boundary tree is used. The
boundary of a tile is the one-pixel wide contour of that tile. The
boundary tree is a sub-tree of the max-tree, consisting of only
the nodes that touch the boundary of a tile. When merging two
tiles back together, only their respective boundary trees have to
be merged. The changes during the merging in the boundary
trees need to be propagated back to the original max-trees of the
tiles. Doing so results in max-trees that are corrected for adjoin-
ing tiles, while not having to merge their full max-trees. This

reduces the memory complexity of each message to O(G
√

N),
where sending the full max-tree would have a memory com-
plexity for each message of O(N). Wilkinson et al. state in their
paper that ”for an 8 bit-per-pixel 40,0002 tile this is a savings of
at least a factor of 78 in communication and memory overhead”
[8].

The max-tree of each tile is computed using the algorithm as
proposed in Wilkinson et al. [16]. Each processor does this
sequentially for the tile it received. This means the memory is
distributed and processors need to communicate with each other
to take the adjoining tiles into account. To do so each processor
creates a boundary tree for the tile it received. A boundary tree
consists of a one-dimensional array with all the max-tree nodes
that touch the border of the tile in it, as well as their parents.

To build the boundary tree, each edge is added in the following
order: north, east, south, and west. Afterward, the parents of all
the nodes in the edges of the tile are added. To make sure every
node is only added once, they are flagged when they get added.
Now that the boundary trees have been generated, the tiles can
be merged. This is done by traversing the tree until the bottom is
reached for each node in the border. Every time there are three
options for a node that needs to be merged:

1. The parent of the current node is the root node, in which
case this branch is done.

2. The parent of the current node is not in the merged tree
yet. Add the node by accumulating the area of the node
and point to its parent. Then continue with that parent.

3. The parent of the current node is already in the merged
tree. Add the accumulated area of this node to it and point
to it. Continue with its parent to add the accumulated area.

This has to be repeated until all tiles are merged back together
into a single boundary tree. This means that the max-tree of
each tile has been corrected as well.

3.3 Hybrid-Memory Halo Approach

In the halo approach [7] to parallelize connected component la-
beling, the image is cut up into tiles, while having a 1-pixel wide
boundary or ”halo” overlap with adjoining pieces. Each tile is
assigned to an MPI process and generates a max-tree by using
the shared-memory parallel flooding algorithm discussed based
on Algorithm 1. A detailed explanation can be found in the pa-
per by Götz et al. [7]. Each max-tree only has the information
of its tile, which means they can be incomplete. The processes
need to communicate with each other to correct each tree and
take all the tiles into account. In order to join the tiles cor-
rectly, after each processor has finished computing their max-
tree, two types of tuples are created. These are communicated
and resolved simultaneously across all processes using Open-
MPI communication techniques. The first set of tuples is for
the locally determinable edges of the boundary trees in the halo
zone. The second set of tuples is for the information about com-
ponents that have been split due to the image division and their
canonical points. These two sets of tuples are resolved simul-
taneously using MPI communication techniques and distributed
to their corresponding MPI process so the tile’s max-tree can be
corrected accordingly. This means each tile now has a max-tree
that has been corrected for the entire image, thus their collection
is the connected (distributed) component forest.

Parallel Computation of Connected Component Trees in Giga and Tera-Scale . . . – Kevin Gevers and Pieter Jan Eilers

120

(a) (b) (c)

Fig. 2: (a) Represents a 16-bit integer 1D image, (b) is a quantized image after mapping the original intensities onto 4 intensities
(c) illustrates the max-tree structure of connected components of the quantized image shown in (b). Originals from [9]

4 COMPARISON

We refrained from using actual speed-up numbers since the dif-
ferent algorithms have been tested on different supercomputer
clusters and different images.

In order to compare the efficiency of the different algorithms
explained in the previous sections, we will a consider number
of import aspects. Speed-ups being the obvious one, both com-
pared to the sequential algorithm and compared to the other par-
allel algorithms. Speed-up is generally defined as Sp = t1/tp.
The execution time on a single process divided by the execution
time on p processing cores. One can say that the algorithm with
the best speed-up will be the best choice. However, another im-
portant feature to look at is memory use. When we have giga-
and tera-scale images, it may become impossible to store the en-
tire max-tree in memory. Another pertinent issue to look at is an
algorithm’s ability to deal with images with a gray-level depth
of 32 bits per pixel or higher.

We will compare the three algorithms discussed in this paper
here. Two of which use a distributed component tree algorithm
to compute the max-tree. The boundary-tree approach[8][5] and
the halo approach [7] respectively. The halo approach also uses
shared memory for the local max-tree computation of each pro-
cess. The remaining algorithm uses a two-stage shared-memory
max-tree approach with a pilot max-tree [9].

4.1 Memory Efficiency
Looking at the distributed case, both the boundary tree and the
halo approach perform extremely well in regards to memory ef-
ficiency. As the number of processes increases, the memory us-
age per process scales down linearly, for images up to 16 bits per
pixel. This allows for the distributed storage of a forest of max-
trees of a giga- or tera-scale image which can then be filtered
and the final output image can be reconstructed. If we look at
the pilot algorithm, a shared-memory approach, the total mem-
ory cost of constructing the final max-tree will be 9N [9], with
N being the size of the original image. This is 3N more than
the sequential Berger algorithm, this is due to the need to store
the quantized image and the pilot max-tree in memory. Conse-
quently, for a considerably large image, it might be impossible
to calculate the max-tree due to a lack of available memory.

4.2 Speed-ups and Dynamic Range
Both the halo approach and the boundary tree approach have a
quasi-linear speed-up, using images with 8 bits per pixel, with

the speed-up increasing, for up to at least 256 cores. Accounting
for the fact that these algorithms were tested on different images
and different machines, both absolute execution time and speed-
up are about equal for images of 8 bits per pixel. Once we ob-
serve the results to 16 bits per pixel [7] [5], we see that the halo
approach has considerably better execution time and speed-up.

The issues with these algorithms come with images having a
higher dynamic range of 16 bits per pixel and up. With the
boundary tree approach, the size of the boundary trees increases
when the bit depth increases resulting in a sharp decrease in
speed-up as the number of processes increase. This is due to
the large overhead of having to communicate all the trees be-
tween the cores. Similarly, with the halo approach, the number
of tuples increases sharply as the dynamic range increases. The
speed-up curve flattens at 64 and 16 cores for 16 and 32 bits per
pixel images respectively.

In the paper by Götz et al. [7], a comparison is drawn be-
tween their proposed halo algorithm and the shared-memory pi-
lot max-tree algorithm by Moschini et al. [9]. While they only
tested the pilot max-tree algorithm for up to 24 threads, it is
quite clear that for images of 8 bits per pixel, the hybrid-memory
halo approach outperforms the pilot max-tree algorithm in terms
of execution time and speed-up as the number of threads in-
creases. However, looking at images of 16 bits per pixel, the
performance is quite similar, at least up to 24 threads. They
make no comparison on images of 32 bits per pixel, as Mos-
chini’s algorithm did not terminate, likely due to a lack of avail-
able memory. The image they used was a 9 Gigapixel image
of the Milky Way. Moschini uses a crop of the same image
to show speed-up numbers of approximately five-fold greater
than the halo approach for 32 threads. Where the speed-up of
the halo algorithms plateaus after 32 threads for images of 32
bits per pixel, the pilot max-tree approach shows an increase in
speed-up for at least up to 64 threads.

5 CONCLUSION

In this paper, we discussed different techniques implementing
parallel max-tree algorithms for connected component label-
ing. It became clear that the three main approaches discussed
focus on different aspects of the process. The pilot max-tree
approach focuses on extreme dynamic range and uses shared
memory. The boundary tree approach focuses on paralleliza-
tion of giga-pixel images of 8-bit and 16-bit per pixel, while
the halo approach is able to handle image up to floating point

SC@RUG 2020 proceedings

121

precision. Making the halo approach the better choice between
the two for processing giga-pixel images in parallel. The halo
approach has similar speed-ups with 8bits per pixel and it can
handle a gray-level depth of up to 32bits per pixel with signif-
icant speed-up. The paper by Markus Götz et al.[7] concludes
that their approach has better performance than any state-of-the-
art shared-memory algorithm, we disagree with this statement,
as it is clear that the pilot max-tree algorithm by Ugo Moschini
et al. [9] is better suited for XDR images, especially for 64-bit
images. Moschini’s pilot max-tree algorithm is not as fast as the
other algorithms for giga-pixel images with low bit depths, so it
should only be used for images with a high bit depth. A signifi-
cant disadvantage of Moschini’s two-stage algorithm is memory
consumption, if we are dealing with gigapixel images, the avail-
able memory might be insufficient when using this approach.

While we could have tested the algorithms ourselves on simi-
lar images, it was infeasible in the given time frame. A future
project would include testing all the current state-of-the-art par-
allel max-tree algorithms on identical images and high produc-
tion clusters.

REFERENCES

[1] C. Berger, T. Geraud, R. Levillain, N. Widynski, A. Bail-
lard, and E. Bertin. Effective component tree computa-
tion with application to pattern recognition in astronomi-
cal imaging. In 2007 IEEE International Conference on
Image Processing, volume 4, pages IV – 41–IV – 44, Sep.
2007.

[2] E. Carlinet and T. Géraud. A comparative review of com-
ponent tree computation algorithms. IEEE Transactions
on Image Processing, 23(9):3885–3895, Sep. 2014.

[3] E. Carlinet and T. Géraud. A comparative review of com-
ponent tree computation algorithms. IEEE transactions on
image processing : a publication of the IEEE Signal Pro-
cessing Society, 23, 07 2014.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, 2nd edition,
2001.

[5] S. Gazagnes and M. Wilkinson. Distributed component
forests in 2-d: Hierarchical image representations suit-
able for tera-scale images. International Journal of Pat-
tern Recognition and Artificial Intelligence, 33(11 SI), 10
2019.

[6] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Inter-
face. The MIT Press, 2014.

[7] M. Götz, G. Cavallaro, T. Géraud, M. Book, and
M. Riedel. Parallel computation of component trees on
distributed memory machines. IEEE Transactions on Par-
allel and Distributed Systems, 29(11):2582–2598, Nov
2018.

[8] J. Kazemier, G. Ouzounis, and M. Wilkinson. Connected
morphological attribute filters on distributed memory par-
allel machines. In J. Angulo, S. Velasco-Forero, and
F. Meyer, editors, Mathematical Morphology and Its Ap-
plications to Signal and Image Processing, Image Process-
ing, Computer Vision, Pattern Recognition, and Graph-
ics, pages 357–368. Springer International Publishing AG,
2017.

[9] U. Moschini, A. Meijster, and M. Wilkinson. A hybrid
shared-memory parallel max-tree algorithm for extreme
dynamic-range images. Ieee transactions on pattern anal-
ysis and machine intelligence, 40(3):513–526, 3 2018.

[10] L. Najman and M. Couprie. Building the component tree
in quasi-linear time. IEEE transactions on image process-
ing : a publication of the IEEE Signal Processing Society,
15:3531–9, 12 2006.

[11] P. Salembier, A. Oliveras, and L. Garrido. Antiextensive
connected operators for image and sequence processing.
IEEE Transactions on Image Processing, 7(4):555–570,
April 1998.

[12] H. Samet and M. Tamminen. Efficient component label-
ing of images of arbitrary dimension represented by linear
bintrees. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 10(4):579–586, July 1988.

[13] P. Soille. Morphological Image Analysis: Principles and
Applications. Springer-Verlag, Berlin, Heidelberg, 2 edi-
tion, 2003.

[14] R. E. Tarjan. Efficiency of a good but not linear set union
algorithm. J. ACM, 22(2):215–225, Apr. 1975.

[15] M. Wilkinson, H. Gao, W. Hesselink, J.-E. Jonker,
and A. Meijster. Concurrent computation of attribute
filters on shared memory parallel machines. Ieee
transactions on pattern analysis and machine in-
telligence, 30(10):1800–1813, 10 2008. Relation:
https://www.rug.nl/informatica/organisatie/overorganisatie/iwi
Rights: University of Groningen. Research Institute for
Mathematics and Computing Science (IWI).

[16] M. H. F. Wilkinson. A fast component-tree algorithm for
high dynamic-range images and second generation con-
nectivity. In 2011 18th IEEE International Conference on
Image Processing, pages 1021–1024, Sep. 2011.

Parallel Computation of Connected Component Trees in Giga and Tera-Scale . . . – Kevin Gevers and Pieter Jan Eilers

122

faculty of science
and engineering

computing science

SC@RUG 2020 proceedings

Rein Smedinga, Michael Biehl (editors)

17th SC@RUG
2019-2020

17th S
C

@
R

U
G

 2019-2020

rug.nl/research/bernoulli

faculty of science
and engineering

computing science

R20170190_omslag_SC_RUG2018_.indd 3 01-05-18 13:11

	voorkant2020
	proceedings
	achterkant2020

